The question of calculating the substitution limits in solid solutions of monazites of rare-earth elements with structure La<sub>1–x</sub>Ln<sub>x</sub>PO<sub>4</sub>, where Ln = Pr – Dy.
DOI:
https://doi.org/10.31558/2617-0876.2017.2.5Keywords:
monazite structure, solid solutions, phosphates, rare-earth elementsAbstract
Earlier, the authors proposed (Get’man, E. I.; Radio, S. V. Inorg. Mater. 2017, DOI: 10.1134/S0020168517070044) to quickly determine equilibrium solubility limits at given temperatures or measure decay temperatures for specified compositions based on the diagrams of thermodynamic stability (dependences of La1–xLnxPO4 decay temperatures from rare-earth elements number). However, in case of intermediate compositions (at x other than 0.02, 0.05, 0.1, 0.2, 0.5), we could find only approximate values, since the measurements were carried out by interpolation in the regions of nonlinear dependence of solid solution temperature from its composition. In the paper, we propose to determine the solubility limits of REE in La1–xLnxPO4 only based on the decomposition temperature or measure the decomposition temperature only based on solubility limits without using any other additional data from the graphical interdependencies described by the R. Becker equation. We also analyzed the values of interaction parameters (Q, kJ/mol) in La1–xEuxPO4 and La1–xGdxPO4 systems, obtained using different methods by different authors during the period of 2007–2017 (Ab initio, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; Ab initio/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).
V. S. Urusov crystallochemical method for determining solid solution mixing energy and R. Becker equation for regular solutions were used to represent the graphs for quick determination of substitution limits in solid solutions of La1–xLnxPO4 with monazite structure, where Ln represents rare-earth elements in Pr – Dy series. The proposed graph dependencies make it possible to determine substitution limits for orthophosphates La1–xLnxPO4 with monazite structure (Ln = Pr – Dy; 0.005 < х < 0.99) based on the specified decomposition temperatures of solid solutions or determine the decomposition (stability) temperatures of solid solutions based on the specified substitution limits without any other parameters using. Graph dependencies can be useful both for specialists working in the field of immobilization of radioactive waste to determine the maximum amount of radioactive material absorber contained in the structure, as well as in the field of creating new luminescent, laser and other materials containing a small amount of activator.
References
Grechanovsky A. E., Eremin N. N., Urusov V. S. Radiation resistance of LaPO4 (monazite structure) and YbPO4 (zircon structure) from data of computer simulation. Physics of the Solid State. 2013. Vol. 55, N 9. P. 1929–1935. DOI: 10.1134/S1063783413090138
Boatner L. A. Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime. Rev. Mineral. Geochem. 2002. Vol. 48, N 1. P. 87–121. DOI: 10.2138/rmg.2002.48.4
Monazite as a suitable actinide waste form / Schlenz H., Heuser J., Neumann A., et al. Z. Kristallogr. 2013. Vol. 228, N 3. P. 113–123. DOI: 10.1524/zkri.2013.1597
Ion-beam-induced amorphization of LaPO4 and ScPO4 / Meldrum A., Boatner L. A., Wang L. M., et al. Nucl. Instr. and Meth. in Phys. Res. B. 1997. Vol. 127–128. P. 160–165. DOI: 10.1016/S0168-583X(96)00873-7
Meldrum A., Boatner L. A., Ewing R. C. A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Miner. Mag. 2000. Vol. 64, N 2. P. 185–194. DOI: 10.1180/002646100549283
Recent progress in actinide phosphates chemistry / Popa K., Wallez G., Bregiroux D., et al. Plutonium Futures – The Science 2016. A Topical conference on plutonium and actinides, supporting safeand secure plutonium research as part of the global energy mix, 18–22 August 2016, Baden-Baden, Germany. 2016. P. 271–275.
Get’Man E. I., Radio S. V. Mixing Energies (Interaction Parameters) and Decomposition Temperatures in Solid Solutions of Monazites of Rare Earth Elements with Structure La1–xLnxPO4. Inorg. Mater. 2017. Vol. 53, N 7. P. 718–721. DOI: 10.1134/S0020168517070044
Becker R. Über den Aufbau binarer Legierungen (On the constitution of binary alloys). Z. Metallkunde. 1937. Vol. 29. P. 245–249. (in German)
Thermochemistry of La1–xLnxPO4-monazites (Ln = Gd, Eu) / Neumeier S., Kegler P., Arinicheva Yu., et al. J. Chem. Thermodynamics. 2017. Vol. 105. P. 396– 403. DOI: 10.1016/j.jct.2016.11.003
Urusov V. S. Energetic theory of miscibility gaps in mineral solid solutions. Fortschr. Mineral. 1975. Vol. 52. P. 141–150.
Урусов В. С. Теория изоморфной смесимости. М: Наука, 1977. 251 с.
Урусов В. С., Еремин Н. Н. Кристаллохимия. Краткий курс. Часть 2. Учебное пособие. М.: Изд-во Московского университета, 2005. 125 с.
Ni Y., Hughes J. M.; Mariano A.N. Crystal chemistry of the monazite and xenotime structures. Amer. Mineralogist. 1995. Vol. 80, N 1–2. P. 21–26. DOI: 10.2138/am-1995-1-203
Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A. 1976. V. A32. P. 751– 767. DOI: 10.1107/S0567739476001551
Hoppe R. Madelung Constants as a new Guide to the Structural Chemistry of Solids. Adv. Fluor. Chem. 1970. Vol. 6. P. 387–438.
Бацанов C. C. Концепция электроотрицательности; итоги и перспективы. Успехи химии. 1968. Т. 37, № 5. С. 778–815.
Xue D., Zuo S., Ratajczak H. Electronegativity and structural characteristics of lanthanides. Physica B. 2004. Vol. 352, N 1–4. P. 99–104. DOI: 10.1016/j.physb.2004.06.060
Бацанов С. С. Структурная химия. Факты и зависимости. М: Диалог-МГУ, 2000. 292 с.
Infrared-to-visible energy upconversion luminescence in orthophosphate NdPO4 irradiated with cw 800 nm light / Nicácio D. L., Gouveia E. A., de Araujo M. T., et al. Annals of Optics (XXVI Encontro Nacional de Física da Matéria Condensada). 2003. Vol. 5. P. 438–440.
Raman characterization and photoluminescence properties of La1–xTbxPO4·nH2O and La1–xTbxPO4 phosphor nanorods prepared by microwave-assisted hydrothermal synthesis / Colomer M.T., Bartolomé J., Ortiz A.L., et al. Ceram. Int. 2017. Vol. 43, N 14. P. 10840–10847. DOI: 10.1016/j.ceramint.2017.05.110
Solvothermal synthesis and luminescent properties of monodisperse LaPO4:Ln (Ln = Eu3+, Ce3+, Tb3+) particles / Yang P., Quan Z., Li C., et al. J. Solid State Chem. 2009. Vol. 182, N 5. P. 1045–1054. DOI: 10.1016/j.jssc.2009.01.024