Isomorphous substitutions in the system Pb<sub>(8−x)</sub>Ln<sub>x</sub>Na<sub>2</sub> (PO<sub>4</sub>)<sub>6</sub><sub>(2−x/2)</sub>O<sub>(x/2)</sub>, where Ln = Tb, Dy, Ho, Tm, and Yb.
DOI:
https://doi.org/10.31558/2617-0876.2017.2.4Keywords:
apatite, isomorphous substitution, rare-earth elements, crystal structureAbstract
Compounds with apatite structure having the composition M10(ZO4)6X2 (where M = Na+ , K+ , Ca2+, Sr2+, Ba2+, Pb2+ , Cd2+, Y3+, La3+, REE etc.; Z = Si4+, Ge4+, P5+, V5+ , As5+, S6+, Cr6+ etc.; X = OH– , F– , Cl– , Br– , I– , O2– , (vacancies) are characterized by various properties. As a result, they are intensively studied and may be used as bioactive, luminescent and laser materials, sensors, solid electrolytes, sorbents, catalysts. In crystal chemistry the apatite formula can be represented as [M(1)]4[M(2)]6(ZO4)6X2. M(1) (4f position) is surrounded by nine oxygen atoms, which are the part of ZО4 tetrahedra. M(2) (6h position) is surrounded by six oxygen atoms being the part of ZО4 tetrahedra and X atom (position 2a) located in the structure channel. Cations in the position M(2) form triangles, their central axis coinciding with axis c. Repeating of this structure along axis c enables the formation of channels, in which X ions can be located and move. Such structure allows to make isomorphous substitution by different atoms in structural units M, Z, and X. The present study represents the results of isomorphous substitution of lead by REE of yttrium subgroup, which was mainly realized in the system Pb(8−x)TbxNa2 (PO4)6(2−x/2)O(x/2).
Substitution of rare-earth elements (REEs, Ln: Tb, Dy, Ho, Tm, and Yb) for lead in the lacunary apatite Pb(8−x)LnxNa2 (PO4)6(2−x/2)O(x/2) (0 ≤ x ≤ 2) in accordance to scheme 2 Pb2+ + → 2 Ln3+ + O2– has been studied by Xray powder diffraction (including the Rietveld refinement), scanning electron microscopy and FT-IR spectroscopy. Single phase solid solutions Pb(8−x)LnxNa2 (PO4)6(2−x/2)O(x/2) are formed in the range from х = 0.00 to х = 0.55. By changing the parameters of elementary cells from the composition and the phase-vanishing method the solubility limits xmax of REE decreases with an REE atomic number increasing from 0.55 till 0.12 at 800 °C (xmax = 0.53–0.55 for Tb, xmax = 0.45 for Dy, xmax = 0.38 for Ho, xmax = 0.16–0.18 for Tm, and xmax = 0.12 for Yb) were established. Refinements of X-ray diffraction patterns by the Rietveld method show that substitution lead to Pb(2)—O(1,2,3) and Pb(2)—O(2) atomic distances decreases. This study shows that REE atoms substitute for Pb preferentially at the Pb(2) sites of the apatite structure.
References
Luminescence of Ce3+ -activated chalcogenide apatites Ca10(PO4)6Y (Y = S, Se) / Zhang J., Liang H., Yu R., et al. Mater. Chem. Phys. 2009. Vol. 114, N 1. P. 242–246. DOI: 10.1016/j.matchemphys.2008.09.045
Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water / Kale S., Kahandal S., Disale S., et al. Curr. Chem. Lett. 2012. Vol. 1. P. 69–80. DOI: 10.5267/j.ccl.2012.3.002
Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and mi crostructure aspects / Grossin D., Rollin-Martinet S., Estournès C., et al. Acta Biomater. 2010. Vol. 6, N 2. P. 577– 585. DOI: 10.1016/j.actbio.2009.08.021
Yoshioka H., Nojiri Y., Tanase S. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics. 2008. Vol. 179, N 38. P. 2165–2169. DOI: 10.1016/j.ssi.2008.07.022
Брег У., Кларингбулл Г. Кристаллическая структура минералов. М.: Мир, 1967. 390 c.
Serret A., Cabanas M. V., Vallet-Regi M. Stabilization of calcium oxyapatites with lanthanum (III)-created anionic vacancies. Chem. Mater. 2000. Vol. 12, N 12. P. 3836–3841. DOI:10.1021/cm001117p
Fleet M. E., Liu X., Pan Y. Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J. Solid State Chem. 2000. Vol. 149, N 2. P. 391–398. DOI: 10.1006/jssc.1999.8563
Isomorphous Substitutions of Rare Earth Elements for Calcium in Synthetic Hydroxyapatites / Ardanova L. I., Get’man E. I, Loboda S. N. et al. Inorg. Chem. 2010. Vol. 49, N 22. P. 10687–10693. DOI: 10.1021/ic1015127
The crystal structure of lacunar apatite NaPb4(PO4)3 / Koumiri M., Oishi S., Sato S., et al. Mater. Res. Bull. 2000. Vol. 35. P. 503–513. DOI: 10.1016/S0025-5408(00)00254-3
Lattice parameters and cation distribution of solid solutions of calcium and lead hydroxyapatite / Verbeeck R., Lassuyt C., Heijligers H., et al. Calcif. Tissue Int. 1981. Vol. 33, N 1. P. 243–247. DOI:10.1007/BF02409444
Merker L., Wondratschek H. Neue Verbindungen mit apatitartiger Struktur II. Die Gruppe der Alkali-BleiVerbindungen. Z. Kristallogr. Cryst. Mater. 1957. Vol. 109, N 1-6. P. 110–114. DOI:10.1524/zkri.1957.109.1-6.110
The silver lead apatite Pb8Ag2(PO4)6: hydrothermal preparation / Ternane R., Ferid M., Krib-Ariguib N., et al. J. Alloys Compd. 2000. Vol. 308, N 1-2. P. 83–86. DOI: 10.1016/S0925-8388(00)00882-3
Engel G. Infrarotspektroskopische und rontgenographische Untersuchungen von Bleihydroxylapatit, Bleioxyapatit und Bleialkaliapatiten. J. Solid State Chem. 1973. Vol. 6, N 2. 286–292. DOI:10.1016/0022- 4596(73)90192-8
Mayer I., Cohen S., Matalon J. R. Solid Solution of Pb8M2(XO4)6 Lead Alkali Apatites. J. Solid State Chem. 1981. Vol. 36, N 3. P. 271–274. DOI: 10.1016/0022- 4596(81)90437-0
Toumi M., Mhiri T. Crystal structure and spectroscopic studies of Na2Pb8(PO4)6. J. Ceramic Soc. Japan. 2008. Vol. 116, N 1356. P. 904–908. DOI: 10.2109/jcersj2.116.904
Synthesis, characterization and electrical properties of a lead sodium vanadate apatite / Chakroun-Ouadhour E., Ternane R., Hassen-Chehimi D. B., et al. Mater. Res. Bull. 2008. Vol. 43, N 8-9. P. 2451–2456. DOI: 10.1016/j.materresbull.2007.07.030
Etude Structurale D’Orthovanadates D’Alcalins et de Plomb Cristallisant avec la Structure Apatite Lacunaire / Azrour M., El Ammari L., Le Fur Y., et al. J. Solid State Chem. 1998. Vol. 141, N 2. P. 373–377. DOI: 10.1006/jssc.1998.7949
Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 1976. Vol. 32, N 5. P. 751–767. DOI:10.1107/S0567739476001551
Brixner L. H., Bierstedt P. E. Optical and electronic properties of some new rare earth-doped sodium apatites. J. Solid State Chem. 1975. Vol. 13, N 1-2. P. 24–31. DOI: 10.1016/0022-4596(75)90077-8
Изучение кристаллической структуры соединения состава Pb(8–x)Na2Lax(PO4)6O(x/2) / Гетьман Е. И., Игнатов А. В., Лобода С. Н., и др. Вісник Донецького національного університету, Сер. А: Природничі науки. 2009. № 2. С. 217–219.
Твердые растворы в системе Pb8−xPrxNa2(PO4)6 2−x/2Ox/2 / Игнатов А. В., Гетьман Е. И., Лобода С. Н., и др. Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. 2011. № 17. С. 71–76.
Study the crystal structure of the composition Pb8−xEuxNa2(PO4)6 2−x/2Ox/2 / Getman E. I., Ignatov A. V., Abdul Jabar M. A. B., et al. Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия». 2011. Т. 24, № 63. С. 48–56.
Твердые растворы в системе Pb(8−x)NdxNa2(PO4)6 (2−x/2)O(x/2) / Гетьман Е. И., Игнатов А. В., Лобода С. Н., и др. Укр. хим. журн. 2011. Т. 77, № 9–10. С. 30–34.
Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6 / Get’man E. I., Loboda S. N., Ignatov A. V., et. al. Inorg. Chem. 2016. Vol. 55, N 5. P. 2165–2173. DOI: 10.1021/acs.inorgchem.5b02571
Rodríguez-Carvajal J. Program FullProf.2k, Version 2.20. 2002. Laboratoire Léon Brillouin (CEA– CNRS), France.
Roisnel T. WinPLOTR: a Windows tool for powder diffraction patterns analysis. Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7). 2000. Vol. 378–381. P. 118–123. DOI: 10.4028/www.scientific.net/MSF.378-381.118
Wilson R. M., Elliot J. C., Dowker S. E. P. Rietveld refinement of the crystallographic structure of human dental enamel apatites. Amer. Mineral. 1999. Vol. 84. P. 1406–1414. DOI: 10.2138/am-1999-0919