Acid-base interactions in the two-component system “carboxylic acid – aprotic solvent”.
DOI:
https://doi.org/10.31558/2617-0876.2017.2.3Keywords:
carboxylic acids, association, self-associates, IR spectroscopy, UV spectroscopy, cryoscopyAbstract
The behavior of carboxylic acids (benzoic, trichloroacetic, acetic) in aprotic solvents in the temperature range 5– 60 °C was studied by methods of UV spectroscopy, cryoscopy, and IR spectroscopy. Analyzing the values of the dimerization constants, one can see that with increase of temperature and the acid properties of carboxylic acids, the amount of dimeric form decreases, and the content of the monomeric form increases due to the equilibrium shift. Additionally, on the ground of the values of the equilibrium constants and the enthalpy of the dimerization, cyclization and addition of the monomer to the linear polymer obtained from the NMR spectroscopy data, it was shown that the equilibrium constant for the formation of a linear dimer from two monomers differs significantly from the monomer addition constant to the linear polymer. The state of the "acetic acid–CCl4" system is mostly affected by cyclic and linear dimerization processes. Comparison of the enthalpy of formation data represents that the strength of the hydrogen bond in the cyclic dimer is much less than in the linear dimer, while the stabilization energy is higher. Also, according to the equilibrium constants of the corresponding process, the amount and stability of the self-associates formed were analyzed: cyclic dimer, linear dimer, linear polymer. Comparison of the values of the equilibrium constant and the enthalpy of the association processes in different media shows that the content of various associated forms and the acid monomer depends on the nature of the solvent. Moreover, the molecules of the solvent can themselves act as bases – a participant of the acid-base processes. For dicarboxylic acids (aliphatic, phthalic) in DMSO and acetonitrile, the strength of the intramolecular hydrogen bond was estimated on the basis of the values of the homoconjugation constants.References
Erden I. Oxiranes and Oxirenes: Monocyclic. Vancouver: Dake University of British Columbia, Elsevier Ltd., 2008. P. 171–217.
Алициклические эпоксидные соединения. Реакционная способность / Касьян Л. И. и др. Днепропетровск: Изд-во Днепропетр. ун-та, 2003. 516 c.
Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine+propionic asid system / Orzechowski K., Pajdowska M., Przybylski J. et al. РССР. 2000. Vol. 2. P. 4676–4681.
On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations / Eremin R. A., Kholmurodov K. T., Petrenko V. I. et al. Chemical Physics. 2015. Vol. 461. P. 1–10.
Self-Association of Acetic Acid in Dilute Deuterated Chloroform. Wide-Range Spectral Reconstructions and Analysis using FTIR Spectroscopy, BTEM, and DFT / Tjahjono M., Cheng S. Y., Li C. Z. et al. Journal of Physical Chemistry A. 2010. Vol. 114, N 46. P. 12168–12175.
Билобров В. М. Водородная связь. Межмолекулярные взаимодействия. Киев: Наук. думка, 1993. 520 c.
Barrow G. M., Yerger E. A. Acid-base reactions in non-dissociating solvents. Acetic acids and triethylamine in carbon tetrachloride and chloroform. J. Am. Chem. Soc. 1954. Vol. 76. P. 5211–5216.
Goldman M. A., Emerson M. T. Hydrogen-bonded species of acetic acid in inert solvents. The Journal of Physical Chemistry. 1973. Vol. 77, N 19. P. 2295–2299.
Tjahjono M., Allian A. D., Garland M. Experimental dipole moments for nonisolatable acetic acid structures in a nonpolar medium. A combined spectroscopic, dielectric, and DFT study for self-association in solution. Journal of Physical Chemistry B. 2008. Vol. 112, N 20. P. 6448–6459.
Di Tommaso D., Watson K. L. Density Functional Theory Study of the Oligomerization of Carboxylic Acids. Journal of Physical Chemistry A. 2014. Vol. 118, N 46. P. 11098–11113.
Tsivintzelis I., Kontogeorgis G. M., Panayiotou C. Dimerization of Carboxylic Acids: An Equation of State Approach. Journal of Physical Chemistry B. 2017. Vol. 9, N 121. P. 2153–2163.
Свойства органических соединений. Справочник / Кузнецов А. Н. и др. Ленинград: Химия, 1984. 318 c.
Рабинович В. А., Хавин З. Я. Краткий химический справочник. Ленинград: Химия, 1978. 392 c.
Mitsuo I. Ultraviolet absorption study of the molecular association of benzoic acid and its derivatives. Journal of Molecular Spectroscopy. 1960. Vol. 4. P. 144– 154.
Allen G., Watkinson J. G., Webb K. H. An infrared study of the association of benzoic acid in the vapour phase, and in dilute solution in non-polar solvents. Spectrochimica Acta. 1966. Vol. 22. P. 807–814.
Iijima T.; Kakiuchi H. The relationship between the association constants of phenol with ethers and those of trichloroacetic acid with ethers: Estimation of association constans of trichloroacetic acid with oxirane. Tetrahedron. 1979. Vol. 35. P. 299–302.
Mitsuo I., Hideo T., Sunao I. Effect of Temperature on Ultraviolet Absorption Spectra of Benzoic Acids and its Relation to Hydrogen Bonding. J. Am. Chem. Soc. 1960. Vol. 82, N 7. P. 1559–1564.
Haruo H., Jiro T., Saburo N. Ultraviolet absorption spectra of monomer and dimer of benzoic acid. Journal of molecular spectroscopy. 1962. Vol. 8. P. 257–275.
Деревянко Л. И., Царевская М. Н., Фиалков Ю. Я. Исследование взаимодействия ароматических аминов с уксусной, моно- и трихлоруксусной кислотами в диоксане криоскопическим методом. Укр. хим. журнал. 1973. Т. 39, № 5. C. 430–434.
Pham H. H., Taylor C. D., Henson N. J. FirstPrinciples Prediction of the Effects of Temperature and Solvent Selection on the Dimerization of Benzoic Acid. Journal of Physical Chemistry B. 2013. Vol. 117, N 3. P. 868–876.
Investigation of hydrogen bond structure in benzoic acid solutions / Novak P., Vikić-Nopić D., Meić Z. et al. Journal of Molecular Structure. 1995. Vol. 356. P. 131– 141.
Kolthoff I. M., Chantooni Jr. M. K. Intramolecular Hydrogen Bonding in Monoanions of o-Phthalic Acid and the Homologous Oxalic Acid Series in Acetonitrile. J. Am. Chem. Soc. 1975. Vol. 97, N 6. P. 1376–1381.
Chantooni Jr. M. K., Kolthof I. M. Acid-Base Equilibria in Methanol, Acetonitrile, and Dimethyl Sulfoxide in Acids and Salts of Oxalic Acid and Homologs, Fumaric and o-Phthalic Acids. Transfer Activity Coefficients of Acids and Ions. The Journal of Physical Chemistry. 1975. Vol. 79, N 12. P. 1176–1182.
Solution conformational preferences of glutaric, 3-hydroxyglutaric, 3-methylglutaric acid, and their monoand dianions / Gerken J. B., Badger C., Bisbee C. et al. Journal of Physical Organic Chemistry. 2008. Vol. 21, N 3. P. 193–197.