Catalyzed by Laccase from Trametes versicolor oxidation of 7,8-dihydroxy-4-hydroxymethyl coumarin.
DOI:
https://doi.org/10.31558/2617-0876.2017.1.6Keywords:
laccase, enzymatic oxidation, mediator, coumarinAbstract
The kinetics of the reaction of laccase oxidation of 7,8-dihydroxy-4-hydroxymethylcoumarin, hydroquinone and flavonoide quercetin with molecular oxygen in an aqueous-organic medium was studied. The influence of the content of dimethylsulfoxide on the activity of laccase from Trametes versicolor in the reaction of enzymatic oxidation of phenols with molecular oxygen was established. Analysis of the kinetic data of laccase oxidation of phenolic compounds under the experimental conditions allows to conclude that 7,8-dihydroxy-4-hydroxymethylcoumarin is a more reactive phenol compared to the standard substrate of laccase hydroquinone and flavonoid quercetin. This indicates the prospectivity of studying coumarin derivatives as compounds with potentially high mediator properties.References
Solomon E. I., Sundaram U. M., Machonkin T. E. Multicopper Oxidases and Oxygenases. ChemInform. 1996, 96(7), Р. 2563-2606.
Boyer P. D. The Enzymes. Academic Press 1981, 641 р.
Yaropolov A.I., Skorobogat’ko O.V., Vartanov S.S. and Varfolomeyev S.D. Laccase: Properties, catalytic mechanism, and applicability. Applied Biochemistry and Biotechnology 1994, 49(3), Р. 257–280.
Ranocha P., Mcdougall G., Hawkins S. et al. Biochemical characterization, molecular cloning and expression of laccases - a divergent gene family - in poplar. European Journal of Biochemistry 1999, 259(1-2), Р. 485–495.
Ryan S., Schnitzhofer W., Tzanov T., CavacoPaulo A., Gübitz G. An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme and Microbial Technology 2003, 33(6), Р. 766–774.
Hall M., Scott T., Sugumaran M., Soderhall K., Law J. H. Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning. Proceedings of the National Academy of Sciences. 1995. 92(17). Р. 7764–7768.
Mogharabi M.; Faramarzi M. A. Laccase and Laccase-Mediated Systems in the Synthesis of Organic Compounds. ChemInform. 2014. 45(23).
Изучение ферментативной активности грибов P. Aspergillius при культивировании на растительных отходах. Прутенская E.A., Степанов А.В., Сульман Э.М. II Московский международный Конгресс: Био- технология: состояние и перспективы развития. Москва, 2003. Часть 2. – С. 38.
Kuhar F.; Papinutti L. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers. Revista Argentina de Microbiología. 2014, 46(2), Р. 144–149.
Tisma M.; Molnar M.; Skarica M.; Cacic M.; Zelic B. Laccase Inhibiting Activity of Some Coumarin Derivatives. Letters in Organic Chemistry. 2014. 11(8). Р. 583–589.
Martin D.; Hauthel H. G. Dimethylsulphoxid. Akademie-Verlag, Berlin, 1971
Биорадикалы и биоантиоксиданты: монография. Костюк В.А., Потапович А.И. Минск, 2004. 174 с.
Lee K.-M.; Kang H.-S.; Yun C.-H.; Kwak H.-S. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells. Biomolecules and Therapeutics 2012, 20(5), Р. 492–498.