## ВІСНИК Донецького національного університету імені Василя Стуса

НАУКОВИЙ ЖУРНАЛ

# ЗАСНОВАНИЙ У 1997 році

# Серія ХІМІЧНІ НАУКИ

№ 2 / 2017

## **3MICT**

| РІДИННОФАЗНЕ ОКИСНЕННЯ КУМОЛУ В ПРИСУТНОСТІ ПЕРМАНГАНАТУ КАЛІЮ<br>Л. І. Опейда, Ю. М. Гринда, О. Ю. Хавунко, А. Г. Матвієнко                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| КИСЛОТНО-ОСНОВНІ РІВНОВАГИ У СИСТЕМАХ «КАРБОНОВА КИСЛОТА –<br>ОСНОВА – ОКСИРАН»<br>К. С. Ютілова, Ю. М. Беспалько, О. М. Швед                                                                                                                                                    |
| КИСЛОТНО-ОСНОВНІ ВЗАЄМОДІЇ В ДВОКОМПОНЕНТНІЙ СИСТЕМІ «КАРБОНОВА<br>КИСЛОТА – АПРОТОННИЙ РОЗЧИННИК»<br>О. М. Калінський, Ю. М. Беспалько, О. М. Швед                                                                                                                              |
| IЗОМОРФНІ ЗАМІЩЕННЯ У СИСТЕМІ Рb <sub>(8-x)</sub> Ln <sub>x</sub> Na <sub>2</sub> (PO <sub>4</sub> ) <sub>6</sub> □ <sub>(2-x/2)</sub> O <sub>(x/2)</sub> , ДЕ Ln = Tb, Dy, Ho,<br>Tm I Yb<br><i>Є. І. Гетьман, Мухаммед А. Б. Абдуль Джабар, С. М. Лобода, Б. В. Шульжук</i> 23 |
| ДО ПИТАННЯ РОЗРАХУНКУ ГРАНИЦЬ ЗАМІЩЕНЬ У ТВЕРДИХ РОЗЧИНАХ<br>МОНАЦИТІВ РІДКІСНОЗЕМЕЛЬНИХ ЕЛЕМЕНТІВ СКЛАДУ La <sub>1-x</sub> Ln <sub>x</sub> PO <sub>4</sub> , ДЕ Ln = Pr – Dy<br><i>Є. І. Гетьман, Л. Б. Ігнатова, С. В. Радіо</i>                                               |
| ВЗАЄМОДІЯ В СИСТЕМІ Се <sup>3+</sup> – WO4 <sup>2–</sup> – H <sup>+</sup> – H <sub>2</sub> O ЗА РІЗНОЇ КИСЛОТНОСТІ<br>Г. М. Розанцев, О. Ю. Марійчак, Ю. А. Олексій, Ж. О. Румянцева, С. В. Радіо                                                                                |
| ПРАВИЛА ДЛЯ АВТОРІВ                                                                                                                                                                                                                                                              |

BULLETIN of Vasyl' Stus Donetsk National University SCIENTIFIC JOURNAL

## FOUNDED IN 1997

## Series CHEMICAL SCIENCES

N 2 / 2017

# CONTENTS

| LIQUID PHASE OXIDATION OF CUMENE IN THE PRESENCE OF POTASSIUM<br>PERMANGANATE<br>L. I. Opeida, Yu. M. Grynda, O. Yu. Hayunko, A. G. Matvienko                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACID-BASE EQUILIBRIUM IN "CARBOXYLIC ACID – BASE – OXIRANE" SYSTEMS<br>K. S. Yutilova, Yu. N. Bespal'ko, E. N. Shved                                                                                                            |
| ACID-BASE INTERACTIONS IN THE TWO-COMPONENT SYSTEM "CARBOXYLIC ACID –<br>APROTIC SOLVENT"<br>A. M. Kalinskyi, Yu. N. Bespal'ko, E. N. Shved                                                                                     |
| ISOMORPHOUS SUBSTITUTIONS IN THE SYSTEM $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ , WHERE $Ln = Tb$ , Dy, Ho, Tm, AND Yb <i>E. I. Get man, Mohammed A. B. Abdul Jabar, S. N. Loboda, B. V. Shulzhuk</i>            |
| THE QUESTION OF CALCULATING THE SUBSTITUTION LIMITS IN SOLID SOLUTIONS<br>OF MONAZITES OF RARE-EARTH ELEMENTS WITH STRUCTURE $La_{1-x}Ln_xPO_4$ , WHERE<br>Ln = Pr - Dy<br><i>F. L. Get'man. L. B. Janatova, S. V. Radio</i> 33 |
| INTERACTION IN THE $Ce^{3+} - WO_4^{2-} - H^+ - H_2O$ SYSTEM AT VARIOUS ACIDITY $Ce^{3+} - WO_4^{2-} - H^+ - H_2O$<br><i>G. M. Rozantsev, O. Yu. Mariichak, Yu. A. Oleksii, Zh. O. Rumiantseva, S. V. Radio</i> 41              |
| GUIDE FOR AUTHORS                                                                                                                                                                                                               |

## ВЕСТНИК Донецкого национального университета имени Васыля Стуса

НАУЧНЫЙ ЖУРНАЛ

ОСНОВАН В 1997 году

# Серия ХИМИЧЕСКИЕ НАУКИ

№ 2 / 2017

# СОДЕРЖАНИЕ

| ЖИДКОФАЗНОЕ ОКИСЛЕНИЕ КУМОЛА В ПРИСУТСТВИИ ПЕРМАНГАНАТА КАЛИЯ<br>Л. И. Опейда, Ю. Н. Грында, О. Ю. Хавунко, А. Г. Матвиенко                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| КИСЛОТНО-ОСНОВНЫЕ РАВНОВЕСИЯ В СИСТЕМАХ «КАРБОНОВАЯ КИСЛОТА –<br>ОСНОВАНИЕ – ОКСИРАН»<br>К. С. Ютилова, Ю. Н. Беспалько, Е. Н. Швед                                                                                                                                                |
| КИСЛОТНО-ОСНОВНЫЕ ВЗАИМОДЕЙСТВИЯ В ДВУХКОМПОНЕНТНОЙ СИСТЕМЕ<br>«КАРБОНОВАЯ КИСЛОТА – АПРОТОННЫЙ РАСТВОРИТЕЛЬ»<br>А. М. Калинский, Ю. Н. Беспалько, Е. Н. Швед17                                                                                                                    |
| ИЗОМОРФНЫЕ ЗАМЕЩЕНИЯ В СИСТЕМЕ Pb <sub>(8-x)</sub> Ln <sub>x</sub> Na <sub>2</sub> (PO <sub>4</sub> ) <sub>6</sub> □ <sub>(2-x/2)</sub> O <sub>(x/2)</sub> , ГДЕ Ln = Tb, Dy,<br>Ho, Tm И Yb<br><i>Е. И. Гетьман, Мухаммед А. Б. Абдуль Джабар, С. Н. Лобода, Б. В. Шульжук</i> 23 |
| К ВОПРОСУ РАСЧЕТА ПРЕДЕЛОВ ЗАМЕЩЕНИЙ В ТВЕРДЫХ РАСТВОРАХ<br>МОНАЦИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СОСТАВА La <sub>1-x</sub> Ln <sub>x</sub> PO <sub>4</sub> , ГДЕ Ln = Pr –<br>Dy<br><i>Е. И. Гетьман, Л. Б. Игнатова, С. В. Радио</i>                                                |
| ВЗАИМОДЕЙСТВИЕ В СИСТЕМЕ Ce <sup>3+</sup> – WO <sub>4</sub> <sup>2–</sup> – H <sup>+</sup> – H <sub>2</sub> O ПРИ РАЗЛИЧНОЙ КИСЛОТНОСТИ<br>Г. М. Розанцев, А. Ю. Марийчак, Ю. А. Олексий, Ж. А. Румянцева, С. В. Радио                                                             |
| ПРАВИЛА ДЛЯ АВТОРОВ                                                                                                                                                                                                                                                                |

Liquid phase oxidation of cumene in the presence of potassium permanganate / L. I. Opeida, Yu. M. Grynda, O. Yu. Havunko, A. G. Matvienko // Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки. 2017. № 2. С. 4–8

## UDC 541.128.5:541-145.15:547.1:541.515

# LIQUID PHASE OXIDATION OF CUMENE IN THE PRESENCE OF POTASSIUM PERMANGANATE

L. I. Opeida <sup>a</sup> \*, Yu. M. Grynda <sup>a</sup>, O. Yu. Havunko <sup>a</sup>, A. G. Matvienko <sup>b</sup>

 <sup>a</sup> Department of Physical Chemistry of Fossil Fuels L. M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of National Academy of Sciences of Ukraine, Lviv, Ukraine
 <sup>b</sup> L. M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of National Academy of Sciences of Ukraine, Kiev, Ukraine

The kinetics of oxidation of cumene with potassium permanganate in acetonitrile was studied. It was shown that the rate of oxidation increases in a weakly acidic medium, and the kinetics of the consumption of permanganate ions taken at concentrations substantially lower than the cumene concentration is described by the first-order equation. The effective rate constant linearly depends on the concentration of cumene. It was shown that the addition of small quantities of potassium permanganate into the reaction solution (0.01 mol/L) initiates oxidation of cumene by molecular oxygen. It was proposed the mechanism of reaction, where, at the first stage, the abstraction of the H-atom from the C–H bond of cumene by the reactive  $Mn^{7+}$  containing species occurs and as a result the C-centered  $Ph(CH_3)_2C$ • radicals are formed. They react with oxygen and then participate in the reactions of the propagation of the chain of the process of liquid phase oxidation.

Keywords: potassium permanganate, oxidation, cumene, radicals, molecular oxygen.

## Introduction

Oxidation is an important area in both chemical science and industry [1]. Oxidation products such as phenol, carboxylic acids and anhydrides are important universal their synthetic intermediates for the production of many chemicals, pharmaceuticals and functional materials, some of which are produced in millions of tons annually. For example, phenol, a product of oxidation of cumene, has a world annual consumption of 11.6 million tons [2]. In the last decades, the direct oxidation functionalization of C-H and C-C-bonds has proven to be one of the most effective methods for synthesizing complex products from simple and easily accessible source materials. Among oxidation processes these, where molecular oxygen as a "green" and accessible oxidant is used, attracts special attention due to its high atomic economy and environmentally friendly characteristics. Improvement of the processes of oxidation of petrochemical and coal-chemical origin substrates, which are realized on an industrial scale, for obtaining important oxygen-containing products remains an actual task [3–5].

Potassium permanganate (KMnO<sub>4</sub>) is the most common salt, widely used in organic chemistry as an active stoichiometric oxidant [6]. It is well soluble in water and organic solvents, inexpensive and refers to "green" oxidants [7]. The mechanism of oxidation by permanganates was widely studied [8–11]. The catalysis of liquid-phase oxidation with Mn<sup>3+</sup>, Mn<sup>2+</sup> salts was also studied [12–15]. But the catalysis by KMnO<sub>4</sub> of the oxidation with molecular oxygen remains virtually unexplored.

It is interesting to study the catalytic action of potassium permanganate in the radical-chain oxidation process with molecular oxygen. In this case, its content in the reaction mixture will be several orders of magnitude smaller than when it acts as a stoichiometric oxidant.

## **Experimental Part**

The process of oxidation of cumene in an inert-to-oxidation acetonitrile, in which the organic and inorganic components of our system are well dissolved was studied at 25 °C in a weakly acid medium created by the addition of

<sup>\*</sup> E-mail: opeida\_1@yahoo.com

<sup>©</sup> L. I. Opeida, Yu. M. Grynda, O. Yu. Havunko, A. G. Matvienko, 2017

acetic acid. The kinetics of the reactions was followed by recording the concentration of permanganate ions  $(MnO_4^-)$ , determining photocolorimetrically change in optical density  $(D_{540})$  of a band with a wavelength of 540 nm in quartz cuvettes of 5 mm thick. The studies were carried out in the region of concentrations, where no deviations from the Bouguer–Lambert–Beer law were observed. Reagents from Merck and Sigma were used as obtained.

## **Results and Discussion**

It was established that when potassium permanganate is added to acetonitrile, there is no decrease in the optical density of the absorption band of permanganate ions at  $\lambda_{max} = 540$  nm, which indicates that this solvent is inert in our conditions (Fig. 1, curve 0).



**Fig. 1.** The kinetics of the change in the optical density  $D_{540}$  in acetonitrile in the presence of cumene,  $[C_6H_5CH(CH_3)_2]$ , mol/L: 0 - 0;  $1 - 2.18 \cdot 10^{-2}$ ;  $2 - 6.5 \cdot 10^{-2}$ ; 3 - 0.11; 4 - 0.15; 5 - 1.43 mol/L. [KMnO<sub>4</sub>] =  $2.67 \cdot 10^{-4}$  mol/L, [CH<sub>3</sub>COOH] = 0.066 mol/L.  $\lambda = 540$  nm, l = 5 mm

However, the addition of even small amounts (about 0.02 mol/L) in the solution of cumene causes a decrease in the optical density of  $D_{540}$ , which indicates the oxidation of cumene by permanganate. In the absence of acid, the reaction rate remains small, therefore, the reaction in solutions with additives of acetic acid, which significantly increases the rate of the process further was studied. Experimental data (Fig. 1) show that the reaction rate increases with an increase in the amount of cumene in the system.

The kinetic curves for decreasing the optical density become straight in half-logarithmic coordinates  $\ln D_t/D_0 - t$ : (Fig. 2) which makes it possible to calculate the effective rate constant  $k_{\text{eff}}$  of the pseudo-first-order reaction, which is a

complex function of the rate constants of the individual process steps, hydrogen ion concentration and cumene concentration.

The rate constants of oxidation of cumene by potassium permanganate  $k_{\text{eff}}$  in acetonitrile are given in Table 1.



**Fig. 2.** Semi-logarithmic anamorphoses of absorption dependencies (*D*) of a solution at 540 nm on time at oxidation of cumene by KMnO<sub>4</sub> in acetonitrile.  $[C_6H_5CH(CH_3)_2]$ , mol/L: 1 - 0.0218; 2 - 0.065; 3 - 0.11; 4 - 0.15; 5 - 1.43. [KMnO<sub>4</sub>] =  $2.67 \cdot 10^{-4}$  mol/L, [CH<sub>3</sub>COOH] = 0.066 mol/L

**Table 1.** Dependence of the rate constant ( $k_{eff}$ ) of consumption of MnO<sub>4</sub><sup>-</sup> in the oxidation from the concentration of cumene in acetonitrile. 25 °C,

| $[KMnO_4] = 2.67 \cdot 10^{-4} \text{ mol/L},$ | $[CH_3COOH] = 0.066 \text{ mol/L}$ |
|------------------------------------------------|------------------------------------|
| $[C_6H_5CH(CH_3)_2], mol/L$                    | $k \cdot 10^4$ , s <sup>-1</sup>   |
| 0.022                                          | 0.31                               |
| 0.065                                          | 2.0                                |
| 0.11                                           | 3.4                                |
| 0.15                                           | 6.5                                |
| 1.43                                           | 46.0                               |

The slope of linear dependence  $\ln W - \ln [C_6H_5CH(CH_3)_2]$  (Fig. 3) is 1.0073, which indicates the first order on cumene in the oxidation reaction of potassium permanganate.



**Fig. 3.** Dependence of the logarithm of the rate of cumene oxidation by KMnO<sub>4</sub> in acetonitrile on the logarithm of cumene concentration. [KMnO<sub>4</sub>] =  $2.67 \cdot 10^{-4}$  mol/L; [CH<sub>3</sub>COOH] = 0.066 mol/L

It is supposed, that the first stage of oxidation with potassium permanganate of organic substrates is the abstraction of the hydrogen atom from their C–H or O–H bonds [16–18]. Taking into account the proposed in the work [19] participation of various reactive species in the oxidation of permanganate in an acidic medium, the following reactions can be assumed in the mechanism of oxidation of potassium permanganate:

 $MnO_4^- + H^+ = HMnO_4$  $HMnO_4 + H^+ = H_2MnO_4^+$  $H_2MnO_4^+ = H_2O + MnO_3^+$ 

Depending on the medium, there may be different reactive species and, respectively, the following reactions:

 $MnO_4(-) + HR \rightarrow HOMnO_3(-) + R^{\bullet}$  $HOMnO_3 + HR \rightarrow (HO)_2MnO_2 + R^{\bullet}$  $(HO)_2MnO_2(+) + HR \rightarrow (HO)_3MnO(+) + R^{\bullet}$ 

In the process of oxidation of cumene with potassium permanganate to abstract the hydrogen atom from the C–H bond can  $MnO_4^-$  (in a neutral or alkaline medium), and in an acidic medium one of its protonated forms, for example,  $H_2MnO_4^+$ . This is confirmed by the results of quantum-chemical calculations performed for oxidation reactions with potassium permanganate of N-hydroxyphthalimide, where the rise of reaction rate in an organic solvent is observed with an increase in the concentration of acid in it [20].

The action of potassium permanganate in radical-chain processes was investigated on example of liquid-phase oxidation of cumene (RH) with molecular oxygen (Fig. 4).

The kinetics of oxidation was studied by gas volumetric measuring absorbing oxygen. The amount of oxygen absorbed was measured at a constant temperature (40 °C) and constant partial pressure of oxygen (760 mm Hg). The frequency of the reactor shaking, which provides the reactions in the kinetic mode, was determined in special experiments.

The rates of cumene oxidation with molecular oxygen were calculated by the tangent of the slope of the kinetic curve of oxygen absorption. The effect of the presence of potassium permanganate on the oxidation of cumene by molecular oxygen in an acetonitrile medium was investigated.



**Fig. 4.** The kinetics of oxygen absorption when oxidation of cumene in absence of  $KMnO_4(1)$ , and with  $KMnO_4(2)$ .  $[C_6H_5CH(CH_3)_2] = 1.76 \text{ mol/L}$ , [ACN] = 14.2 mol/L,  $[KMnO_4] = 0.013 \text{ mol/L}$ 

The data in Figure 4 show that under the chosen conditions (40 °C, oxygen pressure 760 mm Hg) in the absence of permanganate, the reaction practically does not occur, no oxygen absorption is observed. The addition of small (0.013 mol/L) amounts of permanganate to the reaction medium results in the oxidation proceeding at a rate of  $9.7 \cdot 10^{-6}$  mol/(L·s). The fact that oxygen is absorbed in the course of oxidation can be explained by the formation of radicals in the reaction medium in the reaction of permanganate with cumene.

Therefore, the results obtained in the investigation of the cumene oxidation with potassium permanganate and the action of permanganate in the oxidation of cumene by molecular oxygen indicate that a known scheme of radical-chain liquid phase oxidation can be used to describe the kinetics of the process:

| $W_{ m i}$ |
|------------|
|            |

| $R^{\bullet} + O_2 \rightarrow ROO^{\bullet}$ | $k_0$ |
|-----------------------------------------------|-------|
|-----------------------------------------------|-------|

| $ROO^{\bullet} + RH \rightarrow R^{\bullet} + ROOH$ | $k_{ m p}$ |
|-----------------------------------------------------|------------|
|                                                     |            |

$$2\text{ROO}^{\bullet} \rightarrow \text{molecular products}$$
  $k_{\text{I}}$ 

At the first stage of cumene oxidation by potassium permanganate radicals are formed that subsequently initiate the chain oxidation process, which leads to the formation of hydroperoxide, and  $Mn^{7+}$  may be reduced further to  $Mn^{3+}$  or  $Mn^{2+}$ , as evidenced by the complete discoloration of the solution. The ions of  $Mn^{3+}$  and  $Mn^{2+}$  are effective catalysts for the radical decomposition of hydroperoxide formed by the Haber–Weiss mechanism.

## Conclusions

The oxidation of cumene with potassium permanganate in acetonitrile has been studied. It is shown that the addition of small amounts of potassium permanganate to the reaction solution (0.01 M) initiates the oxidation of cumene with molecular oxygen. A reaction mechanism was proposed: the H-atom is abstracted from the C–H bond of cumene by the active Mn<sup>7+</sup> containing species at the first stage and C-centered  $Ph(CH_3)_2C^{\bullet}$  radicals are formed. They react with O<sub>2</sub>, and then ROO<sup>•</sup> participate in the reactions of the chain liquid phase oxidation. Summarizing, one can expect high efficiency of using systems based on permanganate to catalyze the liquid phase oxidation of organic substrates with molecular oxygen due to the combination of the initiating role of Mn<sup>7+</sup> containing species with subsequent catalyzing action of the formed  $Mn^{3+}$  or  $Mn^{2+}$  ions.

#### References

1. Lu, W.; Zhou, L. Oxidation of CH Bonds: John Wiley & Sons. Ins., 2017 DOI: 10.1002/9781119092490.ch1.

2. Stahl, S.; Paul, L. Alsters (Ed) *Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives*: John Wiley & Sons., 2016.

3. Recupero, F.; Punta, C. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. *Chemical Reviews*, **2007**, *107*(9), 3799–3842 DOI: 10.1021/cr040170k.

4. Liang, Y.-F.; Jiao, N. Oxygenation via C–H/C–C Bond Activation with Molecular Oxygen. *Acc. Chem. Res.*, **2017**, *50*(7), 1640–1653 DOI: 10.1021/acs.accounts.7b00108.

5. Opeida, I. O. Innovative organocatalysis – perspective trend in reactions of liquid phase oxidation reactions with molecular oxigen. Nauka innov., **2015**, *11*(6), 68–74 DOI: 10.15407/scin 11.06.086. (in Ukrainian).

6. Dash, S.; Patel, S.; Mishra, B. K. Oxidation by permanganate: synthetic and mechanistic aspects. *Tetrahedron*, **2009**, 65(4), 707–739 DOI: org/10.1016/S0040-4020(08)02138-8.

7. Singh, N.; Lee, D. G. Permanganate: A green and versatile industrial oxidant. *Organic process research & development*, **2001**, *5*(6), 599–603 DOI: 10.1021/op010015x.

8. Rudakov, E. S.; Tishchenko, N. A.; Volkova, L. K. Kinetics and selectivity of the oxidation of hydrocarbons by permanganate in water and in CF<sub>3</sub>COOH-H<sub>2</sub>O solutions. *Kinetics and catalysis*, **1986**, *27*(5), 949–957.

9. Volkova, L. K.; Geletii, Y. V.; Lyubimova, G. V.; Rudakov, E. S.; Tret'yakov, V. P., Shilov, A. E. Oxidation rate of saturated hydrocarbons by permanganate in aqueous solutions. *Bulletin of the Academy of Sciences of the USSR*, *Division of chemical science*, **1982**, *31*(7), 1473–1474.

10. Chauhan, M. Permanganate Oxidation mechanisms of Alkylarenes. *IOSR Journal of Applied Chemistry*, **2014**, 7(6), 16–27 DOI: 10.9790/5736-07611627.

11. Shaabani, A.; Tavasoli Rad, F.; Lee, D. G. Potassium permanganate oxidation of organic compounds. *Synthetic communications*, **2005**, *35*(4), 571–580.

12. Bukharkina, T. V.; Grechishkina, O. S.; Digurov, N. G. & Krukovskaya, N. V. Liquid-Phase Ethyl Benzene Oxidation Catalysed by Manganese Salts. *Organic Process Research & Development*, **1999**, *3*(6), 400–403 DOI: 10.1021/op990031i.

13. Bukharkina, T. V.; Grechishkina, O. S.; Digurov, N. G., Krukovskaya, N. V. Kinetic model of ethyl benzene oxidation catalysed by manganese salts. *Organic process research & development*, **2003**, *7*(2), 148–154 DOI: 10.1021/op9900986.

14. Bukharkina, T. V.; Digurov, N. G. Kinetics of aerobic liquid-phase oxidation of organic compounds. *Organic process research & development*, **2004**, 8(3), 320–329 DOI: 10.1021/op030012f.

15. Khusnutdinov, R. I.; Bayguzina, A. R.; Dzhemilev, U. M. Manganese compounds in the catalysis of organic reactions. *Russian Journal of Organic Chemistry*, **2012**, *48*(3), 309-348. (in Russian).

16. Gardner, K. A.; Mayer, J. M. Understanding C-H Bond Oxidations: H and H- Transfer in the Oxidation of Toluene by Permanganate. *Science*, **1995**, *269*, 1849–1851.

17. Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M. Hydrogen Atom Abstraction by Permanganate: Oxidations of Arylalkanes in Organic Solvents. *Inorg. Chem.*, **1997**, *36*(10), 2069–2078 DOI: 10.1021/ic961297y.

18. Brinksma, J. Manganese catalysts in homogeneous oxidation reactions. *University Library Groningen* [Host], **2002**.

19. Rudakov, E. S.; Lobachev, V. L. The first step of oxidation of alkylbenzenes by permanganates in acidic aqueous solutions. *Russian Chemical Bulletin*, **2000**, *49*(5), 761–777 DOI: 10.1007/BF02494695. (in Russian).

20. Opeyda L. I., Popov A. F. Features of initial stages of oxidation of n-hydroxyphthalimide by potassium permanganate. *Dopovidi NASU*, **2016**, 4, 88–91 DOI: 10.15407/dopovidi2016.04.086. (in Ukrainian).

Рукопис надійшов до редакції 15.10.2017

## УДК 541.128.5:541-145.15:547.1:541.515

## Рідиннофазне окиснення кумолу в присутності перманганату калію

Л. І. Опейда, Ю. М. Гринда, О. Ю. Хавунко, А. Г. Матвієнко

Вивчено кінетику окиснення кумолу перманганатом калію в ацетонітрилі. Показано, що швидкість окиснення збільшується в слабокислому середовищі, а кінетика витрати перманганат-іонів, взятих при концентраціях значно нижчих, ніж концентрація кумолу, описується рівнянням першого порядку. Спостережувана константа швидкості лінійно залежить від концентрації кумолу. Показано, що додавання невеликих кількостей перманганату калію в реакційний розчин (0,01 моль/л) ініціює окиснення кумолу молекулярним киснем. Було запропоновано механізм реакції, в якому на першому етапі відбувається відрив Н-атома від С–Н-зв'язку кумолу активними частинками перманганат-іонів, і внаслідок цього утворюються С-центровані Ph(CH<sub>3</sub>)<sub>2</sub>С• радикали. Вони реагують з киснем, а потім беруть участь у реакціях продовження ланцюга окиснення рідкої фази.

Ключові слова: перманганат калію, окиснення, кумол, радикали, молекулярний кисень.

УДК 541.128.5:541-145.15:547.1:541.515

#### Жидкофазное окисление кумола в присутствии перманганата калия

Л. И. Опейда, Ю. Н. Грында, О. Ю. Хавунко, А. Г. Матвиенко

Изучена кинетика окисления кумола перманганатом калия в ацетонитриле. Показано, что скорость окисления увеличивается в слабокислой среде, а кинетика расходования перманганат-ионов, взятых при концентрациях значительно более низких, чем концентрация кумола, описывается уравнением первого порядка. Наблюдаемая константа скорости линейно зависит от концентрации кумола. Показано, что добавление небольших количеств перманганата калия в реакционный раствор (0,01 моль/л) инициирует окисление кумола молекулярным кислородом. Было предложено механизм реакции, в котором на первом этапе происходит отрыв H-атома от C–H связи кумола активными частицами перманганат-ионов, и в результате образуются C-центрированные Ph(CH<sub>3</sub>)<sub>2</sub>C• радикалы. Они реагируют с кислородом, а затем участвуют в реакциях продолжения цепи окисления жидкой фазы.

Ключевые слова: перманганат калия, окисление, кумол, радикалы, молекулярный кислород.

Кислотно-основні рівноваги у системах «карбонова кислота – основа – оксиран» / К. С. Ютілова, Ю. М. Беспалько, О. М. Швед // Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки. 2017. № 2. С. 9–16

УДК 547.29+547-304.2

# КИСЛОТНО-ОСНОВНІ РІВНОВАГИ У СИСТЕМАХ «КАРБОНОВА КИСЛОТА – ОСНОВА – ОКСИРАН»

К. С. Ютілова \*, Ю. М. Беспалько, О. М. Швед

Донецький національний університет імені Василя Стуса, м. Вінниця, Україна

Розглянуто шляхи утворення само- та гетероасоціатів у системі «карбонова кислота – основа (третинний амін / тетраалкіламонієва сіль) – оксиран». Визначено залежність процесів первинної та вторинної асоціації від полярності розчинника та кислотно-основних властивостей компонентів системи. Проаналізовано кількісні характеристики комплексів: кислота – кислота, кислота – оксиран, кислота – основа та їх вплив на швидкість реакції та її механізм.

**Ключові слова:** кислотно-основна рівновага, асоціація, карбонові кислоти, третинні аміни, тетраалкіламонієві солі, оксиран.

## Вступ

Реакції оксиранів з протонодонорними нуклеофілами в присутності каталізаторів основної природи є об'єктами значної кількості експериментальних досліджень, в яких особлива увага приділяється встановленню механізму їх взаємодії [1-4]. Оскільки в системі присутні сполуки як кислотної, так і основної природи, то досліджувані шляхи нуклеофільного розкриття оксиранового циклу в присутності протонодонорних реагентів, що узгоджуються з кінетичними та стереохімічними даними, можна умовно поділити на дві групи: 1) нуклеофільна атака (Nu) на атом Карбону в циклі (лімітуюча стадія) передує переносу протона і 2) утворення водневого зв'язку між оксираном і протонодонором (НА) передує нуклеофільній атаці:



Схема 1. Можливі шляхи нуклеофільного розкриття оксиранового циклу

В даній роботі розглянуто кислотно-основні взаємодії у трикомпонентній системі

\* E-mail: k.iutilova@donnu.edu.ua

«карбонова кислота – основа (третинний амін / тетраалкіламонієва сіль) – оксиран».

#### Утворення комплексів 1:1

У розчинниках з невисокою діелектричною проникністю утворення комплексів між кислотою і основою (В) має складний характер [5–10], вивчення якого обов'язково включає ідентифікацію комплексів, що утворюються, і визначення констант кислотно-основних рівноваг. Методами інфрачервоної [11] і фотоелектронної [12] спектроскопії, кріоскопії [6] показано, що в системі «карбонова кислота – амін – розчинник» можливе утворення комплексів за рахунок водневого зв'язку типу:

$$HA + B \stackrel{K_B}{\Longrightarrow} BHA \qquad (1)$$

З урахуванням асоціатів, які утворюють карбонові кислоти в апротонних протоінертних розчинниках, можливою є рівновага:

$$(\mathrm{HA})_2 + 2\mathrm{B} \stackrel{K_B}{=} 2\mathrm{BHA} \qquad (2)$$

Константа рівноваги  $K_B$  взаємодій, які описують рівняння (1) і (2), значною мірою залежить від сили кислоти й основи (табл. 1). Рівновага у реакції (1) зсувається в бік продукту реакції – комплексу ВНА при зниженні

<sup>©</sup> К. С. Ютілова, Ю. М. Беспалько, О. М. Швед, 2017

температури [7] і зменшенні стеричних перешкод біля атому Нітрогену [6, 9]. У протоактивних розчинниках (діоксан) порівняно з протоінертними розчинниками (CCl<sub>4</sub>, CHCl<sub>3</sub>) зменшується ступінь асоціації при утворенні комплексу ВНА [6, 9, 10, 13], що пояснюється конкурентними взаємодіями кислоти з основними центрами в діоксані та аміні за реакцією (1).

| Кислота<br>( <i>pK<sub>a</sub><sup>H<sub>2</sub>O</sup></i> [14]) | Основа ( $pK_a^{H_2O}$ [14])                                                                                                        | <i>T</i> , °C | $K_B$                        | Розчинник                             | Метод дослідження        |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|---------------------------------------|--------------------------|--|
|                                                                   |                                                                                                                                     | HA+           | B 💶 F                        | BHA                                   |                          |  |
| CH <sub>3</sub> COOH<br>(4,75)                                    | $(C_2H_5)_3N$                                                                                                                       | 25            | $\frac{800}{3,00\cdot 10^3}$ | CCl <sub>4</sub><br>CHCl <sub>3</sub> | ІЧ-спектроскопія [5]     |  |
|                                                                   | (10,07)                                                                                                                             | _             | $7,14 \cdot 10^3$            | бензол                                | кріоскопія [9]           |  |
|                                                                   | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub><br>(4,58)<br>(CH <sub>3</sub> ) <sub>2</sub> NC <sub>6</sub> H <sub>5</sub><br>(5,06) | _             | Немає вза-<br>ємодії         | діоксан                               | кріоскопія [6]           |  |
| ClCH <sub>2</sub> COOH<br>(2,87)                                  | хінолін<br>(4,94)                                                                                                                   |               | 0,91<br>1,5                  |                                       | кріоскопія [9]           |  |
| Cl <sub>2</sub> CHCOOH<br>(1,84)                                  |                                                                                                                                     |               | 15                           |                                       |                          |  |
| Cl <sub>3</sub> CCOOH<br>(0,70)                                   | (CH <sub>3</sub> ) <sub>2</sub> NC <sub>6</sub> H <sub>5</sub><br>(5,06)                                                            |               | 184                          |                                       |                          |  |
| C <sub>6</sub> H <sub>5</sub> COOH                                | $(C \mathbf{H}) \mathbf{N}$                                                                                                         | 20            | $5,58 \cdot 10^{3}$          |                                       | 1                        |  |
| (4,18)                                                            | $(C_2H_5)_3N$                                                                                                                       | 25            | $3,76 \cdot 10^3$            | бензол                                | фотоелектронна спектрос- |  |
|                                                                   | (10,87)                                                                                                                             | 30            | $3,00.10^{3}$                |                                       | коппя [7]                |  |
| C <sub>6</sub> H <sub>5</sub> OH<br>(9,98)                        | C <sub>2</sub> H <sub>5</sub> NH <sub>2</sub><br>(10,73)                                                                            | _             | 15                           | діоксан                               | кріоскопія [9]           |  |
| $(HA)_2 + 2B \implies 2BHA$                                       |                                                                                                                                     |               |                              |                                       |                          |  |
| CH <sub>3</sub> COOH<br>(4,75)                                    | (C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub> N<br>(10,87)                                                                          | 25            | 1,6<br>22                    | CCl <sub>4</sub><br>CHCl <sub>3</sub> | - ІЧ-спектроскопія [5]   |  |

Таблиця 1. Константи кислотно-основної рівноваги (КВ) в органічних розчинниках для процесів (1), (2)

## Утворення комплексів 1:2

У системі «кислота – амін» у надлишку кислоти в апротонних розчинниках, крім комплексів складу 1:1, можливим є утворення комплексів складу 1:2 – В(НА)<sub>2</sub> [6, 9]:

$$2HA + B \stackrel{K_{B'}}{=} B(HA)_2 \qquad (3)$$

Рівновага (3) зсувається в бік утворення В(HA)<sub>2</sub>, як і у випадку комплексів ВНА, при підвищенні основності В і зменшенні стеричних перешкод біля атому Нітрогену аміну, згідно з результатами кріоскопічних досліджень (табл. 2) [6, 9]. При цьому підвищення кислотності НА зсуває рівновагу (3) вліво, зменшуючи кількість комплексу В(HA)<sub>2</sub>, що утворюється.

**Таблиця 2.** Константи кислотно-основної рівноваги (*K<sub>B</sub>*) у діоксані для процесу (3)

| (нв) у дюкеши для процесу (5) |                                               |                   |  |  |
|-------------------------------|-----------------------------------------------|-------------------|--|--|
| Кислота                       | Основа                                        | $K_B'$            |  |  |
| CH <sub>3</sub> COOH          | $(C_2H_5)_3N$                                 | 588 [9]           |  |  |
|                               | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | 0,676 [6]         |  |  |
| CICH <sub>2</sub> COOH        | $(CH_3)_2NC_6H_5$                             | 0,260 [6]         |  |  |
|                               |                                               | В області над-    |  |  |
| Cl <sub>3</sub> CCOOH         | $(CH_3)_2NC_6H_5$                             | лишку кислоти не- |  |  |
|                               |                                               | має взаємодії [6] |  |  |

Кислотно-основні взаємодії (1–3) в бензолі, діоксані та ряді інших розчинників ускладнюються вторинними процесами – асоціацією утворених комплексів [6, 8–10] згідно з рівняннями (4), (5):

$$2BHA \stackrel{K_{lac}}{\longleftarrow} (BHA)_2, \qquad (4)$$

$$2B(HA)_2 \stackrel{K_{2ac}}{\longleftarrow} (B(HA)_2)_2, \qquad (5)$$

де  $K_{1ac} = \frac{[BHA]^2}{[(BHA)_2]}; K_{2cc} = \frac{[(BHA)_2]^2}{[(B(HA)_2)_2]}.$ 

Вторинна асоціація найбільш характерна у випадках утворення комплексів сильними кислотами (моно-, трихлороцтова кислота – амін) або сильними основами (діетиламін, триетиламін – кислота) (табл. 3). У надлишку кислоти процеси асоціації посилюються. Вторинна асоціація не спостерігається, якщо первинні асоціати утворені слабкою кислотою і слабкою основою [6, 10].

| для процеств (4), (5)  |                                                 |                       |                      |             |
|------------------------|-------------------------------------------------|-----------------------|----------------------|-------------|
| Кислота                | Основа                                          | $K_{1ac}$             | $K_{2ac}$            | Розчинник   |
| ClCH <sub>2</sub> COOH |                                                 | 9,6.10-1              | 6,8·10 <sup>-1</sup> |             |
| Cl <sub>2</sub> CHCOOH | CH <sub>3</sub> NHC <sub>6</sub> H <sub>5</sub> | 1,87.10-2             | 1,04.10-2            |             |
| Cl <sub>3</sub> CCOOH  |                                                 | 6,95·10 <sup>-3</sup> | 8,42.10-2            |             |
| CH <sub>3</sub> COOH   |                                                 | 2,95.10-2             | 1,20.10-2            | бензол [10] |
| ClCH <sub>2</sub> COOH | $(C_2H_5)_2NH$                                  | _                     | 3,03.10-4            |             |
| Cl <sub>2</sub> CHCOOH |                                                 | _                     | 1,50.10-2            |             |
|                        |                                                 | 7,12.10-5             | 2,58.10-2            |             |
| Cl <sub>3</sub> CCOOH  | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub>   | Вторинна асоціація    |                      | нокон [6]   |
|                        | CH <sub>3</sub> NHC <sub>6</sub> H <sub>5</sub> | Вторинна асоціація    | —                    | дюксан [0]  |

**Таблиця 3.** Константи утворення димерних продуктів приєднання ( $K_{ac}$ ) в органічних розчинниках

Аналіз значень  $K_{1ac}$  і  $K_{2ac}$  показує, що чим сильніше протонодонорні і протоноакцепторні властивості компонентів первинних асоціатів, тим вторинне комплексоутворення за рівнянням (4) здійснюється більш пріоритетно, ніж за рівнянням (5). Збільшення кислотних і основних властивостей компонентів первинних комплексів приводить до зниження асоціації комплексів складу 1:2 і підвищення асоціації комплексів складу 1:1. Аналіз значень  $K_{1ac}$  показує, що асоціація комплексів одного і того ж аміну корелює з протонодонорними властивостями кислот. Так, для комплексів кислота – N-метиланілін  $pK_{1ac}$  лінійно залежать від  $pK_a^{H_2O} - pK_b^{H_2O}$  компонентів:

$$pK_{1ac} = (1.97 \pm 0.21) - (2.04 \pm 0.37) \times (6) \times (pK_a^{H_2O} - pK_b^{H_2O})$$

Для  $K_{2ac}$  подібна залежність не є лінійною, що може бути пов'язано з різницею в енергіях приєднання молекули кислоти до аміну і до комплексу складу 1:1, яка залежить від сили кислоти. Зниження протонодонорних властивостей кислоти приводить до зменшення енергії зв'язку кислота – амін, а одночасне збільшення електронодонорних властивостей аніону кислоти приводить до підвищення міцності зв'язку ОН····О в комплексі складу 1:2. У системі «кислота – вторинний амін – розчинник» необхідно враховувати можливість утворення водневого зв'язку Гідрогеном аміногрупи, що підсилює асоціацію [10].

В апротонних протоінертних розчинниках (бензол), як демонструє порівняння констант рівноваги первинних (1–3) і вторинних (4–5) процесів асоціації ( $K_{1ac}^{-1}$  та  $K_{2ac}^{-1}$ ), переважною взаємодією є первинна асоціація [7, 8].

У системі «кислота – амін» у значному надлишку аміну, в першу чергу, увага приділяється проблемам, що пов'язані з переходом протона від кислоти до аміну, який потім приводить до рівноважного утворення молекулярного комплексу, що далі переходить в іонну пару:

 $RCOOH + NR_3 \longrightarrow RCOOH NR_3 \longrightarrow RCOO HNR_3(7)$ 

Характер взаємодії кислоти з амінами наочно ілюструють спектроскопічні дослідження [15] розчинів ізомасляної кислоти в триетиламіні, що містять різні кількості діетиламіну. Вже при еквімолярному співвідношенні кислоти пріоритетним є утворення іонної пари 1:2 кислота – вторинний амін. Це вказує на енергетичну перевагу взаємодії ізомасляної кислоти з діетиламіном порівняно з триетиламіном. Крім того, аліфатичні вторинні аміни утворюють зі стандартним донором протона більш міцний водневий зв'язок, ніж третинні [5]. Ймовірно, фактором, що стимулює утворення іонної пари у випадку вторинного аміну, є існування другого водневого зв'язку NH···O=C у молекулярному комплексі кислота – амін. Цей зв'язок приводить до підвищення електронної густини на атомі Нітрогену і до зниження її на групі OH, що спрощує перехід протона по зв'язку OH····N з утворенням іонної пари [15]:



Схема 2. Утворення воднево-зв'язаного комплексу «карбонова кислота – амін»

#### Третинні та четвертинні амонієві солі

Стан амонієвої солі в рівновазі (7) (комплекс з водневим зв'язком або іонна пара) оцінено [16] за значеннями дипольних моментів солей три-н-бутиламонію та триетиламонію в бензолі (табл. 4). Звертає на себе увагу монотонне зменшення µ солі при підвищенні основних властивостей аніону у випадку триалкіламонієвих солей. Для тетраалкіламонієвих солей дипольний момент майже не залежить від  $pK_{a}^{H_{2}O}$  аніону. Крім того, тетраалкіламонієві солі значно полярніші за триалкіламонієві. Задовільне пояснення цим даним надає припущення про утворення водневого зв'язку між катіоном і аніоном (триалкіламонієвий іон переважно орієнтований зв'язком N-H до аніону). Таким чином, відстань між іонами стає коротшою, що і пояснює спостережувану різницю в дипольних моментах триалкіл- і тетраалкіламонієвих солей.

**Таблиця 4.** Значення дипольних моментів (µ) для алкілзаміщених амонієвих солей у бензолі [16] µ, Дб

|                     |                                                                          | μ, Дб                           |                                       |                    |  |
|---------------------|--------------------------------------------------------------------------|---------------------------------|---------------------------------------|--------------------|--|
| Аніон солі          | <i>рК</i> <sub><i>a</i></sub> <sup><i>H</i><sub>2</sub>0</sup><br>аніону | три- <i>н</i> -бу-<br>тиламоній | тетра- <i>н</i> -<br>бутиламо-<br>ній | триетила-<br>моній |  |
| бромід              |                                                                          | 8,50                            | 12,2                                  | I                  |  |
| хлорацетат          | 2,86                                                                     | 6,41                            | 14,8                                  | 6,78               |  |
| форміат             | 3,75                                                                     | 5,46                            |                                       | 5,55               |  |
| бензоат             | 4,20                                                                     | 4,27                            | 12,1                                  | 4,40               |  |
| ацетат              | 4,76                                                                     | 3,94                            |                                       | 4,02               |  |
| циклогекса-<br>ноат | 4,89                                                                     | 3,64                            | _                                     | 3,63               |  |

У випадку солей порівняно слабких кислото комплекс з водневим зв'язком між кислотою та основою (рівновага (7)) переважає над іонною формою існування солі триалкіламонію. В цілому зі збільшенням різниці між  $pK_a^{H_2O}$  кислоти й основи внесок іонної форми комплексу кислота – амін зростає [17], а при підвищенні температури рівновага між молекулярним та іонним комплексами зміщується в бік утворення молекулярного комплексу [15].

#### Експериментальна частина

Як показано раніше, ефективним методом аналізу донорно-акцепторних взаємодій в системі є дослідження коливальної структури сполук з використанням експериментальних методів (ІЧ-, УФ-спектроскопія) [15, 18-20].

ІЧ-спектри зразків записано на ІЧ-спектрометрах з перетворювачем Фур'є FTIR «Spectrum BXII» (Perkin-Elmer), Thermo Nicolet IR 300, TENSOR 27 «Bruker Optics» в області хвильових чисел v = 400-4000 см<sup>-1</sup> ( $\delta = \pm 0.8$  см<sup>-1</sup>). УФ-спектри записано на спектрофотометрах «Specord UV VIS», СФ-2000 і Specord 200 «Analytic Jena» у діапазоні довжин хвиль 200–400 нм.

Крижану оцтову кислоту спочатку очищують виморожуванням. Домішки карбонільних сполук, що містяться у промислово вироблених карбонових кислотах, видаляють кип'ятінням з наступною перегонкою та осушенням над P<sub>2</sub>O<sub>5</sub> за методикою [21].

Домішки первинних і вторинних амінів у промислово вироблених третинних амінах видаляють кип'ятінням з наступною перегонкою та осушенням над NaOH за методикою [21].

#### Результати та їх обговорення

Характеристичні частоти коливань мономерів і воднево-зв'язаних комплексів (схема 3) ( $v_{O-H}$ ,  $v_{C=O}$  – для оцтової та бензойної кислот і I, II, III,  $v_{C(O)C}$ ,  $v_{C-CI}$  – для епіхлоргідрину і II,  $v_{C-N}$  – для триметиламіну (триетиламіну) і III) наведені у табл. 5. Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017



Схема 3. Воднево-зв'язані комплекси в досліджуваній системі: кислота – кислота (I), кислота – оксиран (II), кислота – основа (III)

**Таблиця 5.** Положення смуг поглинання (см<sup>-1</sup>), спостережуваних в IЧ-спектрах у розчиннику в системі «карбонова кислота – епіхлоргідрин – амін»

| Система                                         | Віднесення (смуга, см <sup>-1</sup> )                                                                                                                                                                |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | Розчинник – CCl <sub>4</sub>                                                                                                                                                                         |
| CH <sub>3</sub> COOH (A)                        | v <sub>O-H</sub> (3510 сл – мономер); v <sub>O-H (O)</sub> (3400–2960 ш – димер); v <sub>C=O</sub> (1760 сл – мономер, 1705 с –                                                                      |
|                                                 | димер); взаємодія між C=O і O–H димерів δ (1440-1360 ср, 1290–1200 с)                                                                                                                                |
| $C_6H_5COOH(A')$                                | v <sub>OH</sub> (3530 сл – мономер); v <sub>C=O</sub> (1720 – мономер і димер, 1660–1690 – асоціат)                                                                                                  |
|                                                 | $v^{\rm as}_{\rm C(O)C}$ (1265); $v^{\rm s}_{\rm C(O)C}$ (960)                                                                                                                                       |
|                                                 |                                                                                                                                                                                                      |
| $(C_2H_{\epsilon})_2N(\mathbf{B})$              | $v_{\rm CN}$ (1180–1040)                                                                                                                                                                             |
| $\frac{(C_2H_3)_{31}}{\mathbf{A} + \mathbf{S}}$ | $v_{CN}$ (1100 1010)<br>$v_{CN}$ (1100 1010)<br>$v_{CN}$ (1100 1010)<br>$v_{CN}$ (1100 1010)<br>$v_{CN}$ (1100 1010)                                                                                 |
| 11 1 0                                          | $v_{C-R}$ (510 см – мономер), $v_{C-R}$ (6) (5500 2200 м – спостери истьех уширения от налу перио<br>няно з I – лимер і комплекс кислота – оксиран). $v_{C-Q}$ (1760 ср – мономер 1710 с – спостері- |
|                                                 | гається уширення сигналу – лимер і комплекс кислота – оксиран): взаємолія між C=O і O–H                                                                                                              |
|                                                 | $\delta$ (1460–1360 с. 1310–1200 с. – спостерігається уширення сигналів): $v^{s}$ соос (980 – комплекс                                                                                               |
|                                                 | (1,1,0,1,0,0) ( $(0,0,0,0,0,0)$ ( $(0,0,0,0,0,0)$ ) ( $(0,0,0,0,0,0,0,0,0)$ ) ( $(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$                                                                             |
| A + B                                           | v <sub>0-н</sub> (3510 сл – мономер) і v <sub>0-н (0)</sub> (3400–2960 ш – димер) не спостерігається; v <sub>0-н (N)</sub> (2700–                                                                    |
|                                                 | 2340 ср – комплекс кислота – амін); v <sub>C=0</sub> (1710 с – комплекс кислота – амін); v <sub>C-N</sub> (1210–1000)                                                                                |
| A + S + B                                       | v <sub>O-H (O)</sub> (3400–3040 сл – димер, комплекс кислота – оксиран); v <sub>O-H (N)</sub> (2700–2350 ср – комплекс                                                                               |
|                                                 | кислота – амін); v <sub>C=0</sub> (1760 ср – димер і комплекс кислота – оксиран; 1710 с – комплекс кис-                                                                                              |
|                                                 | лота – амін); v <sub>C-N</sub> (1210–1000 ср); v <sup>s</sup> <sub>C(O)C</sub> (980 ср – комплекс кислота – оксиран)                                                                                 |
|                                                 | Розчинник – епіхлоргідрин                                                                                                                                                                            |
| A + S                                           | <i>v</i> <sub>O-H</sub> і <i>v</i> <sub>O-H (O)</sub> (3700–2960 ш, ср димер і комплекс кислота – оксиран); <i>v</i> <sub>C=O</sub> (1770 с – мономер,                                               |
|                                                 | 1720 с- димер і комплекс кислота – оксиран); взаємодія між C=O і O-H δ (1400 ср, 1300 ср);                                                                                                           |
|                                                 | $v^{\rm as}_{\rm C(O)C}$ (1240); $v^{\rm s}_{\rm C(O)C}$ (1100 – комплекс кислота – оксиран)                                                                                                         |
| A' + S                                          | $v_{\text{O-H}}$ (3300–2900 ш, димер і комплекс кислота – оксиран); $v_{\text{C=O}}$ (1700, димер і комплекс кис-                                                                                    |
|                                                 | лота – оксиран)                                                                                                                                                                                      |
| A + S + B                                       | V <sub>O-H (O)</sub> (3500–3300 ср – димер і комплекс кислота – оксиран); v <sub>O-H (N)</sub> (2700–2340 ср – ком-                                                                                  |
|                                                 | плекс кислота-амін); v <sub>C=0</sub> (1750 с – димер і комплекс кислота – оксиран; 1700 с – комплекс                                                                                                |
|                                                 | кислота – амін); v <sub>C-N</sub> (1210–1000)                                                                                                                                                        |
| $\mathbf{A'} + \mathbf{S} + \mathbf{B}^{a}$     | $v_{\text{O-H}}$ (3100–2800 ш, димер і комплекс кислота – оксиран), $v_{\text{C=O}}$ (1370–1360 – взаємодія між                                                                                      |
|                                                 | C=O і O–H, характерно для RCOO <sup>-</sup> )                                                                                                                                                        |

a) (H-C4H9)3N.

ІЧ-спектри комплексів І, II, III показують істотний зсув смуг  $v_{O-H}$  і  $v_{C=O}$  в бік низьких частот в ряду І > II >>> III порівняно зі спектром мономера оцтової кислоти, що пов'язано з посиленням асоціації в даних комплексах як у газовій фазі, так і в розчиннику – епіхлоргідрині. Порівняння смуг у спектрах епіхлоргідрину та триметиламіну зі спектрами II і III, відповідно, показує невелику зміну частот валентних коливань зв'язків С–О, С–СІ, С–N. Співставлення результатів експерименту і розрахунку дозволяє співвіднести спостережувані смуги в експериментальних ІЧ-спектрах з певним типом коливань.

Положення характеристичних частот коливань в експериментальних IЧ-спектрах поглинання і максимумів поглинання, що спостерігаються в УФ-спектрах (табл. 6), свідчить на користь можливості одночасної присутності в реакційній системі «оксиран – кислота – амін» всіх трьох типів воднево-зв'язаних комплексів I, II, III як у чотирихлористому вуглеці, так і в епіхлоргідрині.

Таблиця 6. Положення максимумів поглинання (λ, нм), що спостерігаються в УФ-спектрах у розчиннику в системі «карбонова кислота –

| el                                                 | піхлорі ідрин — амін»               |
|----------------------------------------------------|-------------------------------------|
| Система                                            | λ, нм                               |
|                                                    | Розчинник – CCl <sub>4</sub>        |
| $CH_3COOH(\mathbf{A})$                             | ~240                                |
| $C_6H_5COOH(A')$                                   | ~276, ~283,5                        |
|                                                    | ~235; ~248                          |
| $\bigvee_{0}$ (S)                                  |                                     |
| $C_6H_5N(CH_3)_2$ ( <b>B'</b> )                    | ~255–330                            |
| $(C_2H_5)_3N(B)$                                   | ~260–270                            |
| $\mathbf{A} + \mathbf{S}$                          | зменшення інтенсивності сигналу,    |
|                                                    | батохромний зсув ~255               |
| S + B'                                             | змін немає порівняно з (II) і (III) |
| $\mathbf{A}(\mathbf{a}) + \mathbf{B'}$             | зменшення інтенсивності сигналу     |
|                                                    | ~240,                               |
| $\mathbf{A}(6) + \mathbf{B}^{\prime a)}$           | з'являється максимум ~253–255       |
|                                                    | з'являється максимум ~273,5         |
| A(a)+S+B'                                          | інтенсивності сигналів: зменшу-     |
|                                                    | ється ~250 (II, III) і збільшується |
|                                                    | ~240 (I(a), II)                     |
| $\mathbf{A}(\mathbf{a}) + \mathbf{S} + \mathbf{B}$ | уширення сигналу ~245–255           |
| Розч                                               | инник – епіхлоргідрин               |
| A(a)                                               | ~230                                |
| <b>A</b> (б)                                       | ~239,5; 258; 267,5; 281             |
| B'                                                 | ~227                                |
| <b>B</b> ' <sup>a)</sup>                           | ~236                                |
| A(a) + B'                                          | уширення сигналу, батохромний       |
| $\mathbf{A}(6) + \mathbf{B}^{\prime a \prime}$     | зсув ~232                           |
|                                                    | батохромний зсув ~242,5; 275, збе-  |
|                                                    | рігаються ~267,5; 281               |

 $^{a)}(\mu-C_{4}H_{9})_{3}N.$ 

Необхідно зазначити, що введення третинного аміну в систему «оксиран – кислота» істотно зсуває положення смуг (ІЧ-спектр:  $v_{O-H}$ і  $v_{C=O}$ ) і максимумів поглинання (УФ-спектр: уширення сигналу, батохромний зсув), характерних для мономеру, ІІ і ІІІ, в бік більш низьких частот (ІЧ-спектр) або довгих хвиль (УФ-спектр), що пов'язано з утворенням комплексу ІІІ з більшим ступенем асоціації.

## Висновки

Кислотно-основні взаємодії у реакції розкриття оксиранового циклу карбоновими кислотами в присутності N-вмісних основ ускладнюються процесами асоціації. Комплекси, що утворюються за допомогою водневого зв'язку, здатні до вторинної асоціації, що підтверджується спектральними методами. На основі даних IЧ- та УФ-спектроскопії показана можливість одночасної присутності в реакційній системі «оксиран – кислота – амін» всіх трьох типів воднево-зв'язаних комплексів I, II, III як у чотирихлористому вуглеці, так і в епіхлоргідрині.

## Список літератури

1. Швец В. Ф., Ромашкин А. В. Кинетика и механизм реакции оксиэтилирования терефталевой кислоты при катализе основаниями. *Кинетика и катализ.* 1972. Т. 13, № 4. С. 885–890.

2. Взаимодействие метакриловой кислоты с эпихлоргидрином при катализе третичными аминами / Маслюк А. Ф., Березницкий Г. К., Грищенко В. К. и др. *Укр. хим. журнал.* 1984. Т. 50, № 1. С. 92–97.

3. Kucharski M., Lubczak R. Kinetics and mechanism of reaction between acrylic acid or metacrylic acid. *J. Chem. Techlol. Biotechnol.* 1998. Vol. 72. P. 117–124.

4. Швед Е. Н., Усачев В. В., Козорезова Е. И. Каталитическое раскрытие оксиранового цикла при ацидолизе эпихлоргидрина уксусной кислотой в присутствии аминов и тетраалкиламмоний галогенидов. *Укр. хим. журнал.* 2007. Т. 73, № 12. С. 113–117.

5. Barrow G. M., Yerger E. A. Acid-base reactions in non-dissociating solvents. Acetic acids and triethylamine in carbon tetrachloride and chloroform. *J. Am. Chem. Soc.* 1954. Vol. 76. P. 5211–5216.

6. Деревянко Л. И., Царевская М. Н., Фиалков Ю. Я. Исследование взаимодействия ароматических аминов с уксусной, моно- и трихлоруксусной кислотами в диоксане криоскопическим методом. *Укр. хим. журнал.* 1973. Т. 39, № 5. С. 430–434.

7. Davis M. M., Paabo M. Acid-base equilibria in benzene at three temperatures. The comporative reactivities of a phenolic acid and a carboxylic acid with triethylamine and with 1,3-diphenylguanidine. *J. Am. Chem. Soc.* 1960. Vol. 82. P. 5081–5084.

8. Царевская М. Н. Ассоциация продуктов взамодействия уксусной, моно- и трихлоруксусной кислот с диметил-, диэтиланилином и триэтиламином. *Укр. хим. журнал.* 1967. Т. 33, №1. С. 21–25.

9. Деревянко Л. И., Царевская М. Н., Фиалков Ю. Я. Взаимодействие аминов жирного ряда и хинолина с уксусной, моно-, ди-, трихлоруксусной кислотами в диоксане криоскопическим методом. Укр. хим. журнал. 1972. Т. 38, №8. С. 771–774.

10. Царевская М. Н. Ассоциация комплексов уксусной и хлоруксусной кислот с метиланилином и диэтиламином состава 2:1 и 1:1 в бензоле. Укр. хим. журнал. 1967. Т. 39, № 5. С. 305–309.

11. Procede de preparation des composes epoxy ammonium quaternaires. Patent France № 2.125.798; decl. 18.02.1971, publ. 29.09.1972.

12. Mitsuo I. Ultraviolet absorption study of the molecular association of benzoic acid and its derivatives. *Journal of molecular spectroscopy*. 1960. Vol. 4. P. 144–154.

Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

13. Билобров М. В. Водородная связь. Межмолекулярные взаимодействия. Киев: Наук. думка, 1993. 520 с.

14. Свойства органических соединений. Справочник / Кузнецов А. Н., Кузнецова Л. М., Плечко Р. Л. и др. Ленинград: Химия, 1984. 318 с.

15. Гусакова Г. В., Денисов Г. С., Смолянский А. Л. Спектроскопическое исследование взаимодействия уксусной и изомасляной кислот с третичными аминами. *Журнал прикладной спектроскопии*. 1972. Т. 17, № 4. С. 667–671.

16. Bauge K., Smith J. W. The dipole moments of some tri-n-butylammonium and triethylammonium salts in benzene solution. *J. Chem. Soc.* (*A*). 1966. P. 616–620.

17. Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine+ propionic acid system / Orzechowski K., Pajdowska M., Przybylski J. et al. *PCCP*. 2000. Vol. 2. P. 4676–4681.

18. Наканиси К. Инфракрасные спектры и строение органических соединений. Москва: Мир, 1965. 216 с.

19. Фізичні методи дослідження в хімії: навчальний посібник для самостійної роботи / Олійник М. М., Горічко М. В., Швед О. М., Сінельникова М. А., Беспалько Ю. М. Донецьк: ДонНУ, 2013. 198 с.

20. Silverstein R. M., Webster F. X. Spectrometric identification of organic compounds. Hoboken: John Wiley & Sons, 1997. 130 p.

21. Armarego W. L. F., Chai C. Purification of Laboratory Chemicals. Waltham: Elsevier, 2013. 1024 p.

Рукопис надійшов до редакції 18.09.2017

#### УДК 547.29+547-304.2

Кислотно-основные равновесия в системах «карбоновая кислота – основание – оксиран» К. С. Ютилова, Ю. Н. Беспалько, Е. Н. Швед

Рассмотрены пути образования само- и гетероассоциатов в системе «карбоновая кислота – основание (третичный амин / тетраалкиламмониевая соль) – оксиран». Установлена зависимость процессов первичной и вторичной ассоциации от полярности растворителя и кислотно-основных свойств компонентов системы. Проанализированы количественные характеристики комплексов: кислота – кислота, кислота – оксиран, кислота – основание и их влияние на скорость реакции и ее механизм.

**Ключевые слова:** кислотно-основное равновесие, ассоциация, карбоновые кислоты, третичные амины, тетраалкиламмониевые соли, оксиран.

#### Acid-base equilibrium in "carboxylic acid – base – oxirane" systems

K. S. Yutilova, Yu. N. Bespal'ko, E. N. Shved

Vasyl' Stus Donetsk National University, Vinnytsya, Ukraine

The formation pathways of self- and heteroassociates in the "carboxylic acid – base (tertiary amine / tetraalkylammonium salt) – oxirane" system were investigated. The effect of the steric parameters and solvent characteristics was considered. It was shown that carboxylic acids are highly complexable. The hydrogen-bonded acid dimers, acid – oxirane, and acid – base associates are also capable to form secondary complexes. The dependence of processes of primary and secondary association on solvent polarity and acid-base properties of system components was established. It was stated that the inert aprotic solvents promote primary and secondary complex formation in the "carboxylic acid – base – oxirane" system, but the primary association is the dominant interaction process. The effect of the nucleophilic and base properties of organic nitrogen-containing base on the association degree of the system components was estimated. The decrease of steric hindrances at the nitrogen atom in the base results in decrease of concentration of the complex acid – base, and the temperature decrease has similarly effect. It was established that more nucleophilic and more polar then amines, quaternary ammonium salts tend to form ionic complexes, yet increase of system temperature shifts the equilibrium towards formation of molecular complexes. The existence of all the considered types of hydrogen-bonded complexes was confirmed by experimental spectral methods: IR and UV spectroscopy. The spectroscopic studies were carried in two solvents: non-polar aprotic carbon tetrachloride and polar aprotic epichlorohydrin. The quantitative characteristics of complexes: acid – acid, acid – oxirane, acid – base and their effect on reaction rate and its mechanism were analyzed.

**Keywords:** acid-base equilibrium, association, carboxylic acids, tertiary amines, tetraalkylammonium salts, oxirane. **References** 

1. Shvets, V. F.; Romashkin, A. V. Kinetika i mekhanizm reaktcii oksietilirovaniia tereftalevoi kisloty pri katalize osnovaniiami [Kinetics and mechanism of oxyethilation reaction of terephthalic acid in presence of base catalysts]. *Kinet. Catal.* **1972**, *13* (4), 885–890 DOI: 10.1002/(SICI)1097-4660(199806)72:2<117::AID-JCTB892>3.0.CO;2-Y. (in Russian)

2. Masliuk, A. F.; Bereznitckii, G. K.; Grishchenko, V. K. Vzaimodeistvie metakrilovoi kisloty s epikhlorgidrinom pri katalize tretichnymi aminami [Metacrylic acid interaction with epichlorohydrin at catalysis by tertiary amines]. *Ukr. Chem. J.* **1984**, *50* (1), 92–97. (in Russian)

3. Kucharski, M.; Lubczak, R. Kinetics and mechanism of reaction between acrylic acid or metacrylic acid. *J. Chem. Techlol. Biotechnol.* **1998**, *72*, 117–124.

Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

4. Shved, E. N.; Usachev, V. V.; Kozorezova, E. I. Kataliticheskoe raskrytie oksiranovogo tcikla pri atcidolize epikhlorgidrina uksusnoi kislotoi v prisutstvii aminov i tetraalkilammonii galogenidov [Catalytic oxirane ring opening at epichlorohydrin acidolysis by acetic acid in presence of amines and tetr. *Ukr. Chem. J.* **2007**, *73* (12), 113–117. (in Russian)

5. Barrow, G. M.; Yerger, E. A. Acid-base reactions in non-dissociating solvents. Acetic acids and triethylamine in carbon tetrachloride and chloroform. *J. Am. Chem. Soc.* **1954**, *76*, 5211–5216 DOI: 10.1021/ja01649a080.

6. Derevianko, L. I.; Tcarevskaia, M. N.; Fialkov, I. I. Issledovanie vzaimodeistviia aromaticheskikh aminov s uksusnoi, mono- i trikhloruksusnoi kislotami v dioksane krioskopicheskim metodom [A study of aromatic amines interaction with acetic, monochloroacetic and trichloroacetic in dioxane by cryoscopic method]. *Ukr. Chem. J.* **1973**, *39* (5), 430–434. (in Russian)

7. Davis, M. M.; Paabo, M. Acid-base equilibria in benzene at three temperatures. The comporative reactivities of a phenolic acid and a carboxylic acid with triethylamine and with 1,3- diphenylguanidine. *J. Am. Chem. Soc.* **1960**, *82*, 5081–5084.

8. Tcarevskaia, M. N. Assotciatciia produktov vzamodeistviia uksusnoi, mono- i trikhloruksusnoi kislot s dimetil-, dietilanilinom i trietilaminom [Association of products of acetic, mono- and trichloroacetic acids interaction with dimethyl-, diethylaniline and triethylamine]. *Ukr. Chem. J.* **1967**, *33* (1), 21–25. (in Russian)

9. Derevianko, L. I.; Tcarevskaia, M. N.; Fialkov, I. I. Vzaimodeistvie aminov zhirnogo riada i khinolina s uksusnoi, mono-, di-, trikhloruksusnoi kislotami v dioksane krioskopicheskim metodom [Fatty amines and quinoline interaction with acetic, mono-, di- and trichloroacetic acids in dioxane by cryoscopic method]. *Ukr. Chem. J.* **1972**, *38* (8), 771–774. (in Russian)

10. Tcarevskaia, M. N. Assotciatciia kompleksov uksusnoi i khloruksusnoi kislot s metilanilinom i dietilaminom sostava 2:1 i 1:1 v benzole [Association of acetic and chloroacetic complexes with methylaniline and diethylamine of ratio 2:1 and 1:1 in benzene]. *Ukr. Chem. J.* **1967**, *39* (5), 305–309. (in Russian)

11. Leneuf, A. Procede de preparation des composes epoxy ammonium quaternaires [Process for the preparation of quaternary epoxy ammonium compounds]. Patent France № 2.125.798, 29.09.1972. (in French)

12. Mitsuo, I. Ultraviolet absorption study of the molecular association of benzoic acid and its derivatives. J. Mol. Spectrosc. **1960**, *4*, 144–154.

13. Bilobrov, V. M. Vodorodnaia sviaz. Mezhmolekuliarnye vzaimodeistviia [Hydrogen bonding. Intermolecular interactions]; Naukova dumka: Kyiv, 1993. (in Russian)

14. Kuznetcov, A. N.; Kuznetcova, L. M.; Plechko, R. L. Svoistva organicheskikh soedinenii. Spravochnik [Properties of organic compounds. Handbook]; Khimiya: Leningrad, 1984. (in Russian)

15. Gusakova, G. V.; Denisov, G. S.; Smolianskii, A. L. Spektroskopicheskoe issledovanie vzaimodeistviia uksusnoi i izomaslianoi kislot s tretichnymi aminami [Spectroscopic study of acetic and isobutyric acid interaction with tertiary amines]. *Zhurnal Prikl. Spektrosk. [Journal applyed Spectrosc.* **1972**, *17* (4), 667–671. (in Russian)

16. Bauge, K.; Smith, J. W. The dipole moments of some tri-n-butylammonium and triethylammonium salts in benzene solution. J. Chem. Soc. **1966**, 616–620.

17. Orzechowski, K.; Pajdowska, M.; Przybylski, J. Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine+propionic acid system. *Phys. Chem. Chem. Phys.* **2000**, *2*, 4676–4681 DOI: 10.1039/B005434H.

18. Nakanisi, K. Infrakrasnye spektry i stroenie organicheskikh soedinenii [Infrared spectra and structure of organic compounds]; Mir: Moscow, 1965. (in Russian)

19. Oliinyk, M. M.; Horichko, M. V.; Shved, O. M.; Sinelnykova, M. A.; Bespalko, I. M. Fizychni metody doslidzhennia v khimii: navchalnyi posibnyk dlia samostiinoi roboty [Physical methods of study in chemistry: learning guide for individual work]; DonNU: Donetsk, 2013. (in Ukrainian)

20. Silverstein, R. M.; Webster, F. X. Spectrometric identification of organic compounds; John Wiley & Sons: Hoboken, 1997.

21. Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals; Elsevier: Waltham, 2013.

Кислотно-основные взаимодействия в двухкомпонентной системе «карбоновая кислота – апротонный растворитель» / А. М. Калинский, Ю. Н. Беспалько, Е. Н. Швед // Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки. 2017. № 2. С. 17–22

УДК 547-32+547.461

# КИСЛОТНО-ОСНОВНЫЕ ВЗАИМОДЕЙСТВИЯ В ДВУХКОМПОНЕНТНОЙ СИСТЕМЕ «КАРБОНОВАЯ КИСЛОТА – АПРОТОННЫЙ РАСТВОРИТЕЛЬ»

А. М. Калинский \*, Ю. Н. Беспалько, Е. Н. Швед

Донецкий национальный университет имени Васыля Стуса, г. Винница, Украина

Изучено поведение карбоновых кислот (бензойной, трихлоруксусной, уксусной) в апротонных растворителях в диапазоне температур 5–60 °С методами УФ-спектроскопии, криоскопии и ИК-спектроскопии. Для уксусной кислоты в CCl4 на основе соответствующих констант равновесия и энтальпии процессов проанализированы количество и устойчивость образующихся самоассоциатов: циклический димер, линейный димер, линейный полимер. Для дикарбоновых кислот (алифатических, фталевой) в ДМСО и ацетонитриле, исходя из значений констант гомоконъюгации, оценена прочность внутримолекулярной водородной связи.

Ключевые слова: карбоновые кислоты, ассоциация, самоассоциаты, ИК-спектроскопия, УФ-спектроскопия, криоскопия.

## Введение

Реакция раскрытия оксиранового цикла протонодонорными нуклеофилами является одной из особых реакций органической химии, ее можно отнести к реакциям и присоединения, и замещения. На стерео- и региоселективность раскрытия цикла, в первую очередь, влияют структура оксирана и условия протекания реакции [1].

Реакция между оксиранами и протонодонорными нуклеофилами (НА) в присутствии оснований (В) происходит, как правило, по крайнему, менее замещенному атому углерода вследствие минимальных пространственных затруднений с образованием «нормальных» продуктов раскрытия оксиранового цикла [2]:



В системе «оксиран – протонодонорный нуклеофил – основание» присутствует одна кислота (протонодонорный нуклеофил НА) и три основания (оксиран – атом кислорода, анион протонодорного нуклеофила А<sup>-</sup> и ос-

новный катализатор В), то для понимания характера взаимодействия оксиранов с протонодонорными нуклеофилами (карбоновыми кислотами, фенолами, спиртами и т. п.) в присутствии катализаторов основной природы в реакции (1) важным является рассмотрение особенностей состояния протонодонорных нуклеофилов и их поведения с основаниями в апротонных растворителях. Кислотно-основные взаимодействия в апротонных растворителях представляют собой равновесный процесс, результат которого зависит от индивидуального поведения кислот и оснований в растворах [3].

Целью работы является изучение состояния моно- и дикарбоновых кислот в апротонных растворителях.

## Поведение кислот в растворе

С учетом особенностей строения карбоксильной группы, имеющей как основный, так и кислотный центры, при оценке поведения карбоновых кислот в растворах, необходимо проанализировать возможность образования различных ассоциатов и самоассоциатов. Поскольку реакция (1) в условиях промышленного синтеза проводится в из-

<sup>\*</sup> E-mail: o.kalinskiy@donnu.edu.ua

<sup>©</sup> А. М. Калинский, Ю. Н. Беспалько, Е. Н. Швед, 2017

бытке эпихлоргидрина – апротонного растворителя с диэлектрической проницаемостью  $\varepsilon = 22$  [4], то изучение процессов ассоциации в двухкомпонентной системе «карбоновая кислота – апротонный растворитель» следует ограничить анализом кислотно-основных взаимодействий в апротонных растворителях.

Состояние карбоновых кислот в растворителях изучается различными методами [5]. Так, согласно крио- и эбулиоскопическим исследованиям, УФ, ПМР, инфракрасной [4, 5] и рамановской спектроскопии [6, 7, 8], DFTисследованиям [5, 9, 10] в органических растворителях карбоновые кислоты существуют в виде смеси мономера, циклического и линейного димеров, а также линейного полимера, которые участвуют в равновесных процессах [8, 11]:

$$2 \text{ HA} \stackrel{K_c}{\longleftarrow} (\text{HA})_{2c} \tag{2}$$

$$2 \text{ HA} \stackrel{K_l}{\longleftarrow} (\text{HA})_{2l} \tag{3}$$

$$HA + (HA)_i \xrightarrow{K_p} (HA)_{i+1}$$
(4)

Равновесие (2) характеризует образование циклического димера из двух мономеров кислоты ( $K_c$ ), (3) – образование линейного димера ( $K_l$ ), (4) – присоединение мономера к существующему полимеру из *i* звеньев ( $K_p$ ) с образованием полимера с длиной цепи (*i*+1).

Значения констант равновесия  $K_c$  процесса (2), рассчитанные на основании исследований различными методами, для карбоновых кислот в апротонных малополярных растворителях приведены в табл. 1. Для одного и того же растворителя константы димеризации уменьшаются с ростом температуры и увеличением кислотных свойств НА, что приводит к повышению содержания мономерной формы кислоты в состоянии равновесия.

Значения констант равновесия и энтальпии процессов (2)–(4), полученные по данным ПМР спектроскопии, приведены в табл. 2, из которой видно, что значение константы равновесия образования линейного димера из двух мономеров значительно отличается от константы равновесия присоединения мономера к *n*-полимеру ( $n \ge 2$ ) [8].

| $( pK_a^{H_2O} [12])$         | <i>T</i> , °C | $K_c$             | Растворитель<br>(ε [13])                | Метод исследования    |  |  |
|-------------------------------|---------------|-------------------|-----------------------------------------|-----------------------|--|--|
| C <sub>6</sub> H <sub>5</sub> | 5,4           | $6,4.10^{4}$      | бензол (2,284)                          | криоскопия [14]       |  |  |
| (4,18)                        | 25            | $1,76 \cdot 10^4$ | н-гексан (1,890)                        | УФ спектроскопия [14] |  |  |
|                               | 25            | $1,5.10^{4}$      |                                         | ИК спектроскопия [14] |  |  |
|                               | 30            | 3660              | иоти получи пописти й илисто н. (2.228) |                       |  |  |
|                               | 45            | 1560              | четыреххлористый углерод (2,238)        |                       |  |  |
|                               | 60            | 710               |                                         |                       |  |  |
|                               | 35            | 5830              |                                         |                       |  |  |
|                               | 47,5          | 2250              | циклогексан (2,023)                     | ИК спектроскопия [15] |  |  |
|                               | 60            | 1210              |                                         |                       |  |  |
|                               | 30            | 456               |                                         |                       |  |  |
|                               | 37,5          | 359               | 5aura (2, 284)                          |                       |  |  |
|                               | 45 269        |                   | 0eH30J1 (2,284)                         |                       |  |  |
|                               | 60            | 150               |                                         |                       |  |  |
| CH <sub>3</sub>               | 25            | 2000              | четыреххлористый углерод (2,238)        | WV anarmaaraning [7]  |  |  |
| (4,75)                        | 25            | 250               | хлороформ (4,806)                       | ИК спектроскопия [7]  |  |  |
| CCl <sub>3</sub>              | 20            | 1071              |                                         |                       |  |  |
| (0,70)                        | 25            | 730               |                                         |                       |  |  |
|                               | 30            | 578               | четыреххлористый углерод (2,238)        | ИК спектроскопия [16] |  |  |
|                               | 35            | 35 405            |                                         |                       |  |  |
|                               | 40            | 329               |                                         |                       |  |  |

Таблица 1. Константы димеризации карбоновых кислот (*K*<sub>c</sub>) в апротонных малополярных растворителях

На состояние системы «уксусная кислота – ССЦ» наибольшее влияние оказывают процессы циклической и линейной димеризации. Причем, прочность водородной связи в циклическом димере существенно меньше, чем в линейном (ср.  $\Delta H$ ), в то время

как энергия стабилизации выше [6]. Так, при 40 °С в очень разбавленном растворе уксусной кислоты в CCl<sub>4</sub> (~0,01 мольных долей) содержится: ~58 % циклического димера, ~23 % линейного димера, 14 % мономера, 3 % линейного тримера.

**Таблица 2.** Константы равновесия (*K<sub>c</sub>*, *K<sub>l</sub>* и *K<sub>p</sub>*) и энтальпии (Δ*H*) процессов самоассоциации уксусной кислоты в растворе CCl<sub>4</sub> [8]

| Процесс ассоциа-                                                 | Конста  | $\Delta H$ , |         |          |
|------------------------------------------------------------------|---------|--------------|---------|----------|
| ции                                                              | 16,5 °C | 31,0 °C      | 40,0 °C | кдж/моль |
| (2) – образование<br>циклического ди-<br>мера                    | 1130    | 650          | 475     | -28      |
| <ul><li>(3) – образование<br/>линейного димера</li></ul>         | 3550    | 1850         | 1250    | -33      |
| <ul><li>(4) – образование<br/>линейного поли-<br/>мера</li></ul> | 59,0    | 44,0         | 37,1    | -15      |

Сопоставление величин констант равновесия и энтальпии процессов ассоциации в разных средах показывает, что содержание различных ассоциированных форм и мономера кислоты зависит от природы растворителя [6, 8]. Так, если в апротонных протоинертных растворителях, таких как четыреххлористый углерод, бензол [6] проявляются лишь неспецифические взаимодействия, то в апротонных протоактивных растворителях, таких как диэтиловый эфир [14, 17, 18], диоксан [19], ацетон [20], ДМСО [21], молекулы растворителя могут сами выступать в качестве оснований – участников кислотно-основных процессов. Поэтому взаимодействия кислот и оснований в апротонных протоактивных растворителях имеют свои особенности.

## Особенности самоассоциации двухосновных кислот

Наличие двух и более карбоксильных групп в карбоновых кислотах усложняет общую картину кислотно-основных взаимодействий. Помимо существования мономерной формы, циклического и линейного димеров, а также линейных полимеров, в системе «поликарбоновая кислота – апротонный растворитель» возможно образование внутримолекулярных ассоциатов, которые участвуют в процессах димеризации и полимеризации, например, по уравнению (5) [19].



При этом длинноцепочечные кислоты сворачиваются в кольца, образуя устойчивую внутримолекулярную водородную связь. Их образование особенно характерно для шестии семичленных кольцевых структур, но с увеличением длины цепи сила H-связей уменьшается. Значения констант внутримолекулярной ассоциации (*K*<sub>homo</sub>), характеризующей силу внутримолекулярной водородной связи, приведены в табл. 3 [22–24].

| Иналата                                    | $pK_1$             |      |                  | $pK_2$             |      |                  | $K_{homo}$         |      |
|--------------------------------------------|--------------------|------|------------------|--------------------|------|------------------|--------------------|------|
| Кислога                                    | CH <sub>3</sub> CN | ДМСО | H <sub>2</sub> O | CH <sub>3</sub> CN | ДМСО | H <sub>2</sub> O | CH <sub>3</sub> CN | ДМСО |
| HOOC–COOH                                  | 14,5               | 6,2  | 1,27             | 27,7               | 14,9 | 4,27             | $4,0.10^{3}$       | _    |
| HOOC–CH2–COOH                              | 15,3               | 7,2  | 2,86             | 30,5               | 18,5 | 5,7              | $0,9 \cdot 10^3$   | _    |
| HOOC–(CH <sub>2</sub> ) <sub>2</sub> –COOH | 17,6               | 9,5  | 4,21             | 29,0               | 16,7 | 5,64             | $0,2 \cdot 10^3$   | <2   |
| HOOC–(CH <sub>2</sub> ) <sub>3</sub> –COOH | 19,2               | 10,9 | 4,34             | 27,9               | 15,3 | 5,27             | $0,6 \cdot 10^3$   | 10   |
| HOOC-(CH <sub>2</sub> ) <sub>4</sub> -COOH | 20,3               | 11,9 | 4,42             | 26,9               | 14,1 | 5,28             | $1,4.10^{3}$       | 8    |
| HOOC-(CH <sub>2</sub> )7-COOH              | 20,8               | 11,9 | 4,55             | 24,8               | 13,5 | 5,42             | $2,7.10^{3}$       | _    |
| о-Фталевая                                 | 14,2               | 6,2  | 2,95             | 29,8               | 16,0 | 5,41             | $0,9.10^{2}$       | _    |

Таблица 3. Константы кислотности (*pK*) и внутримолекулярной ассоциации (*K*<sub>homo</sub>) двухосновных карбоновых кислот

Сопоставление констант кислотности, внутримолекулярной ассоциации двухосновных карбоновых кислот в апротонных растворителях с различной диэлектрической проницаемостью є (ацетонитрил – 37,4, ДМСО – 46,7, вода – 80,1) показывает (табл. 3), что способность к образованию внутримолекулярных ассоциатов увеличивается при понижении полярности растворителя и мало зависит от кислотных свойств и длины углеродного скелета дикарбоновых кислот.

#### Выводы

Поведение карбоновых кислот в органических растворителях носит сложный характер. Монокарбоновые кислоты могут существовать в растворе в виде смеси мономера, циклического и линейного димеров, а также линейного полимера, причем соотношение содержания ассоциатов и мономера кислоты зависит от природы растворителя. Поликарбоновые кислоты также образуют внутримолекулярные самоассоциаты - гомоконъюгованные соединения, содержащие внутримолекулярную водородную связь. Наличие различных ассоциатов карбоновой кислоты в растворах влияет на эффективную концентрацию кислоты, состояние кислотно-основных взаимодействий в реакции (1).

#### Список литературы

1. Erden I. Oxiranes and Oxirenes: Monocyclic. Vancouver: Dake University of British Columbia, Elsevier Ltd., 2008. P. 171–217.

2. Алициклические эпоксидные соединения. Реакционная способность / Касьян Л. И. и др. Днепропетровск: Изд-во Днепропетр. ун-та, 2003. 516 с.

3. Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine+propionic asid system / Orzechowski K., Pajdowska M., Przybylski J. et al. *PCCP*. 2000. Vol. 2. P. 4676–4681.

4. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations / Eremin R. A., Kholmurodov K. T., Petrenko V. I. et al. *Chemical Physics*. 2015. Vol. 461. P. 1–10.

5. Self-Association of Acetic Acid in Dilute Deuterated Chloroform. Wide-Range Spectral Reconstructions and Analysis using FTIR Spectroscopy, BTEM, and DFT / Tjahjono M., Cheng S. Y., Li C. Z. et al. *Journal of Physical Chemistry A.* 2010. Vol. 114, N 46. P. 12168–12175. 6. Билобров В. М. Водородная связь. Межмолекулярные взаимодействия. Киев: Наук. думка, 1993. 520 с.

7. Barrow G. M., Yerger E. A. Acid-base reactions in non-dissociating solvents. Acetic acids and triethylamine in carbon tetrachloride and chloroform. *J. Am. Chem. Soc.* 1954. Vol. 76. P. 5211–5216.

8. Goldman M. A., Emerson M. T. Hydrogen-bonded species of acetic acid in inert solvents. *The Journal of Physical Chemistry*. 1973. Vol. 77, N 19. P. 2295–2299.

9. Tjahjono M., Allian A. D., Garland M. Experimental dipole moments for nonisolatable acetic acid structures in a nonpolar medium. A combined spectroscopic, dielectric, and DFT study for self-association in solution. *Journal of Physical Chemistry B.* 2008. Vol. 112, N 20. P. 6448–6459.

10. Di Tommaso D., Watson K. L. Density Functional Theory Study of the Oligomerization of Carboxylic Acids. *Journal of Physical Chemistry A*. 2014. Vol. 118, N 46. P. 11098–11113.

11. Tsivintzelis I., Kontogeorgis G. M., Panayiotou C. Dimerization of Carboxylic Acids: An Equation of State Approach. *Journal of Physical Chemistry B.* 2017. Vol. 9, N 121. P. 2153–2163.

12. Свойства органических соединений. Справочник / Кузнецов А. Н. и др. Ленинград: Химия, 1984. 318 с.

13. Рабинович В. А., Хавин З. Я. Краткий химический справочник. Ленинград: Химия, 1978. 392 с.

14. Mitsuo I. Ultraviolet absorption study of the molecular association of benzoic acid and its derivatives. *Journal of Molecular Spectroscopy*. 1960. Vol. 4. P. 144– 154.

15. Allen G., Watkinson J. G., Webb K. H. An infrared study of the association of benzoic acid in the vapour phase, and in dilute solution in non-polar solvents. *Spectrochimica Acta*. 1966. Vol. 22. P. 807–814.

16. Iijima T.; Kakiuchi H. The relationship between the association constants of phenol with ethers and those of trichloroacetic acid with ethers: Estimation of association constans of trichloroacetic acid with oxirane. *Tetrahedron*. 1979. Vol. 35. P. 299–302.

17. Mitsuo I., Hideo T., Sunao I. Effect of Temperature on Ultraviolet Absorption Spectra of Benzoic Acids and its Relation to Hydrogen Bonding. *J. Am. Chem. Soc.* 1960. Vol. 82, N 7. P. 1559–1564.

18. Haruo H., Jiro T., Saburo N. Ultraviolet absorption spectra of monomer and dimer of benzoic acid. *Journal of molecular spectroscopy*. 1962. Vol. 8. P. 257–275.

19. Деревянко Л. И., Царевская М. Н., Фиалков Ю. Я. Исследование взаимодействия ароматических аминов с уксусной, моно- и трихлоруксусной кислотами в диоксане криоскопическим методом. *Укр. хим. журнал.* 1973. Т. 39, № 5. С. 430–434.

20. Pham H. H., Taylor C. D., Henson N. J. First-Principles Prediction of the Effects of Temperature and Solvent Selection on the Dimerization of Benzoic Acid. *Journal of Physical Chemistry B.* 2013. Vol. 117, N 3. P. 868–876. Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

21. Investigation of hydrogen bond structure in benzoic acid solutions / Novak P., Vikić-Nopić D., Meić Z. et al. *Journal of Molecular Structure*. 1995. Vol. 356. P. 131– 141.

22. Kolthoff I. M., Chantooni Jr. M. K. Intramolecular Hydrogen Bonding in Monoanions of o-Phthalic Acid and the Homologous Oxalic Acid Series in Acetonitrile. *J. Am. Chem. Soc.* 1975. Vol. 97, N 6. P. 1376–1381.

23. Chantooni Jr. M. K., Kolthof I. M. Acid-Base Equilibria in Methanol, Acetonitrile, and Dimethyl Sulfoxide in Acids and Salts of Oxalic Acid and Homologs, Fumaric and o-Phthalic Acids. Transfer Activity Coefficients of Acids and Ions. *The Journal of Physical Chemistry*. 1975. Vol. 79, N 12. P. 1176–1182.

24. Solution conformational preferences of glutaric, 3-hydroxyglutaric, 3-methylglutaric acid, and their monoand dianions / Gerken J. B., Badger C., Bisbee C. et al. *Journal of Physical Organic Chemistry*. 2008. Vol. 21, N 3. P. 193–197.

Рукопис надійшов до редакції 29.06.2017

#### УДК 547-32+547.461

Кислотно-основні взаємодії в двокомпонентній системі «карбонова кислота – апротонний розчинник» О. М. Калінський, Ю. М. Беспалько, О. М. Швед

Вивчено поведінку карбонових кислот (бензойної, трихлороцтової, оцтової) в апротонних розчинниках в діапазоні температур 5-60 °С методами УФ-спектроскопії, кріоскопії та ІЧ-спектроскопії. Аналізуючи значення констант димеризації, можна побачити, що при підвищенні температури та кислотних властивостей карбонових кислот кількість димерної форми зменшується, а вміст мономерної форми зростає за рахунок зміни рівноваги. Крім того, на підставі значень констант рівноваги та ентальпії димеризації, циклізації та приєднання мономеру до лінійного полімеру, отриманих з даних спектроскопії ЯМР, було показано, що константа рівноваги утворення лінійного димеру з двох мономерів істотно відрізняється від константи додавання мономеру до лінійного полімеру. На стан системи «оцтова кислота-CCl4» найбільше впливають процеси циклічної та лінійної димеризації. Порівняння даних ентальпії утворення свідчить про те, що сила водневого зв'язку набагато менша в циклічному димері, ніж у лінійному, тоді як енергія стабілізації циклічного димера вище. Також, з урахуванням констант рівноваги відповідних процесів, проаналізована кількість та стабільність утворених самоасоціатів: циклічний димер, лінійний димер, лінійний полімер. Порівняння значень константи рівноваги та ентальпії процесів асоціації в різних середовищах показує, що вміст різних асоційованих форм і кислотного мономера залежить від природи розчинника. Більш того, молекули розчинника самі можуть виступати в ролі основи – учасника кислотно-основних процесів. Для дикарбонових кислот (аліфатичних, фталевої) в диметилсульфоксиді й ацетонітрилі, виходячи зі значень констант гомокон'югаціі, оцінена міцність внутрішньомолекулярного водневого зв'язку.

**Ключові слова**: карбонові кислоти, асоціація, самоасоціати, ІЧ-спектроскопія, УФ-спектроскопія, кріоскопія.

#### Acid-base interactions in the two-component system "carboxylic acid - aprotic solvent"

A. M. Kalinskyi, Yu. N. Bespal'ko, E. N. Shved

Vasyl' Stus Donetsk National University, Vinnytsya, Ukraine

The behavior of carboxylic acids (benzoic, trichloroacetic, acetic) in aprotic solvents in the temperature range 5-60 °C was studied by methods of UV spectroscopy, cryoscopy, and IR spectroscopy. Analyzing the values of the dimerization constants, one can see that with increase of temperature and the acid properties of carboxylic acids, the amount of dimeric form decreases, and the content of the monomeric form increases due to the equilibrium shift. Additionally, on the ground of the values of the equilibrium constants and the enthalpy of the dimerization, cyclization and addition of the monomer to the linear polymer obtained from the NMR spectroscopy data, it was shown that the equilibrium constant for the formation of a linear dimer from two monomers differs significantly from the monomer addition constant to the linear polymer. The state of the "acetic acid-CCl<sub>4</sub>" system is mostly affected by cyclic and linear dimerization processes. Comparison of the enthalpy of formation data represents that the strength of the hydrogen bond in the cyclic dimer is much less than in the linear dimer, while the stabilization energy is higher. Also, according to the equilibrium constants of the corresponding process, the amount and stability of the self-associates formed were analyzed: cyclic dimer, linear dimer, linear polymer. Comparison of the values of the equilibrium constant and the enthalpy of the association processes in different media shows that the content of various associated forms and the acid monomer depends on the nature of the solvent. Moreover, the molecules of the solvent can themselves act as bases – a participant of the acid-base processes. For dicarboxylic acids (aliphatic, phthalic) in DMSO and acetonitrile, the strength of the intramolecular hydrogen bond was estimated on the basis of the values of the homoconjugation constants.

**Keywords:** carboxylic acids, association, self-associates, IR spectroscopy, UV spectroscopy, cryoscopy. **References** 

1. Erden, I. Oxiranes and Oxirenes: Monocyclic. *Comprehensive Heterocyclic Chemistry II* **1996**, 97–144 DOI: 10.1016/b978-008096518-5.00003-4.

2. Kasian, L. I.; Kasian, A. O.; Okovityi, S. I.; Tarabara, I. N. Alitciklicheskie epoksidnye soedineniia. Reaktcionnaia sposobnost [Alicyclic epoxy compounds. Reactivity]; Izdatelstvo Dnepropetrovskogo universiteta: Dnipropetrovsk,

Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

Ukraine, 2003. (in Russian)

3. Orzechowski, K.; Pajdowska, M.; Przybylski, J.; Gliński, J.; Kołodziej, H. A. Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine propionic acid system. *Physical Chemistry Chemical Physics* **2000**, *2* (20), 4676–4681 DOI: 10.1039/b005434h.

4. Eremin, R. A.; Kholmurodov, K. T.; Petrenko, V. I.; Rosta, L.; Grigoryeva, N. A.; Avdeev, M. V. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations. *Chemical Physics* **2015**, *461*, 1–10 DOI: 10.1016/j.chemphys.2015.08.017.

5. Tjahjono, M.; Cheng, S.; Li, C.; Garland, M. Self-Association of Acetic Acid in Dilute Deuterated Chloroform. Wide-Range Spectral Reconstructions and Analysis using FTIR Spectroscopy, BTEM, and DFT. *The Journal of Physical Chemistry A* **2010**, *114* (46), 12168–12175 DOI: 10.1021/jp106720v.

6. Bilobrov, V. M. Vodorodnaia sviaz. Mezhmolekuliarnye vzaimodeistviia [Hydrogen bonding. Intermolecular interactions]; Naukova dumka: Kyiv, 1993. (in Russian)

7. Barrow, G. M.; Yerger, E. A. Acid-Base Reactions in Non-dissociating Solvents. Acetic Acid and Triethylamine in Carbon Tetrachloride and Chloroform. *Journal of the American Chemical Society***1954**, *76* (20), 5211–5216 DOI: 10.1021/ja01649a080.

8. Goldman, M. A.; Emerson, M. T. Hydrogen-bonded species of acetic acid in inert solvents. *The Journal of Physical Chemistry* **1973**, 77 (19), 2295–2299 DOI: 10.1021/j100638a008.

9. Tjahjono, M.; Allian, A. D.; Garland, M. Experimental Dipole Moments for Nonisolatable Acetic Acid Structures in a Nonpolar Medium. A Combined Spectroscopic, Dielectric, and DFT Study for Self-Association in Solution. *The Journal of Physical Chemistry B* **2008**, *112* (20), 6448–6459 DOI: 10.1021/jp800609w.

10. Tommaso, D. D.; Watson, K. L. Density Functional Theory Study of the Oligomerization of Carboxylic Acids. *The Journal of Physical Chemistry A* **2014**, *118* (46), 11098–11113 DOI: 10.1021/jp509100u.

11. Tsivintzelis, I.; Kontogeorgis, G. M.; Panayiotou, C. Dimerization of Carboxylic Acids: An Equation of State Approach. *The Journal of Physical Chemistry B* **2017**, *121* (9), 2153–2163 DOI: 10.1021/acs.jpcb.6b10652.

12. Kuznetcov, A. N.; Kuznetcova, L. M.; Plechko, R. L. Svoistva organicheskikh soedinenii. Spravochnik [Properties of organic compounds. Handbook]; Khimiya: Leningrad, 1984.

13. Rabinovich, V. A.; Khavin, Z. I. Kratkii khimicheskii spravochnik; Khimiya: Leningrad, 1978. (in Russian)

14. Ito, M. Ultraviolet absorption study of the molecular association of benzoic acid and its derivatives. *Journal of Molecular Spectroscopy* **1960**, *4* (1-6), 144–154 DOI: 10.1016/0022-2852(60)90074-6.

15. Allen, G.; Watkinson, J.; Webb, K. An infra-red study of the association of benzoic acid in the vapour phase, and in dilute solution in non-polar solvents. *Spectrochimica Acta* **1966**, *22* (5), 807–814 DOI: 10.1016/0371-1951(66)80110-8.

16. Iijima, T.; Kakiuchi, H. The relationship between the association constants of phenol with ethers and those of tricholoroacetic acid with ethers. *Tetrahedron* **1979**, *35* (3), 299–302 DOI: 10.1016/0040-4020(79)80065-4.

17. Ito, M.; Tsukioka, H.; Imanishi, S. Effect of Temperature on Ultraviolet Absorption Spectra of Benzoic Acids and its Relation to Hydrogen Bonding. *Journal of the American Chemical Society***1960**, 82 (7), 1559–1564 DOI: 10.1021/ja01492a011.

18. Hosoya, H.; Tanaka, J.; Nagakura, S. Ultraviolet absorption spectra of monomer and dimer of benzoic acid. *Journal of Molecular Spectroscopy* **1962**, 8 (1-6), 257–275 DOI: 10.1016/0022-2852(62)90027-9.

19. Derevianko, L. I.; Tcarevskaia, M. N.; Fialkov, I. I. Issledovanie vzaimodeistviia aromaticheskikh aminov s uksusnoi, mono- i trikhloruksusnoi kislotami v dioksane krioskopicheskim metodom [Cryoscopic study of aromatic amines interaction with acetic, mono- and trichloro acetic acids in dioxane]. *Ukr. Chem. J.* **1973**, *39*, 430–434. (in Russian)

20. Pham, H. H.; Taylor, C. D.; Henson, N. J. First-Principles Prediction of the Effects of Temperature and Solvent Selection on the Dimerization of Benzoic Acid. *The Journal of Physical Chemistry B* **2013**, *117* (3), 868–876 DOI: 10.1021/jp3062465.

21. Novak, P.; Vikić-Topić, D.; Meić, Z.; Sekušak S.; Sabljić, A. Investigation of hydrogen bond structure in benzoic acid solutions. *Journal of Molecular Structure* **1995**, *356* (2), 131–141 DOI: 10.1016/0022-2860(95)08939-s.

22. Kolthoff, I. M.; Chantooni, M. K. Intramolecular hydrogen bonding in monoanions of o-phthalic acid and the homologous oxalic acid series in acetonitrile. *Journal of the American Chemical Society***1975**, *97* (6), 1376–1381 DOI: 10.1021/ja00839a015.

23. Chantooni, M. K.; Kolthoff, I. M. Acid-base equilibriums in methanol, acetonitrile, and dimethyl sulfoxide in acids and salts of oxalic acid and homologs, fumaric and o-phthalic acids. Transfer activity coefficients of acids and ions. *The Journal of Physical Chemistry* **1975**, *79* (12), 1176–1182 DOI: 10.1021/j100579a007.

24. Gerken, J. B.; Badger, C.; Bisbee, C.; Gardner, S.; Qi, Y.; Vilà, V. D.; Roberts, J. D. Solution conformational preferences of glutaric, 3-hydroxyglutaric, 3-methylglutaric acid, and their mono- and dianions. *Journal of Physical Organic Chemistry* **2008**, *21* (3), 193–197 DOI: 10.1002/poc.1277.

Изоморфные замещения в системе Pb<sub>(8-x)</sub>Ln<sub>x</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>□<sub>(2-x2)</sub>O<sub>(x2)</sub>, где Ln = Tb, Dy, Ho, Tm и Yb / E. И. Гетьман, Мухаммед А. Б. Абдуль Джабар, С. Н. Лобода, Б. В. Шульжук // Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки. 2017. № 2. С. 23–32

УДК 548.32 : 549.753.11 : 546(817'33'663'664'665'667'668)

## ИЗОМОРФНЫЕ ЗАМЕЩЕНИЯ В СИСТЕМЕ $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}, ГДЕ Ln = Tb, Dy, Ho, Tm И Yb$

Е. И. Гетьман, Мухаммед А. Б. Абдуль Джабар, С. Н. Лобода, Б. В. Шульжук \*

Донецкий национальный университет имени Васыля Стуса, г. Винница, Украина

Твердофазным методом синтезированы образцы состава  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ , где Ln = Tb, Dy, Ho, Tm и Yb ( $0 \le x \le 2,0$ ). В полученных системах рентгенофазовым анализом, в том числе с использованием алгоритма Ритвельда, сканирующей электронной микроскопией и методом ИК-спектроскопии исследовано изоморфзамещение свинца на редкоземельные элементы (РЗЭ) иттриевой подгруппы ное по схеме: 2 Pb<sup>2+</sup> +  $\Box$  → 2 Ln<sup>3+</sup> + O<sup>2-</sup>. Установлено, что однофазные образцы образуются в диапазоне от x = 0,00 до x = 0,55. По изменению параметров элементарных ячеек от состава и методом «исчезающей фазы» установлены пределы замещения свинца на РЗЭ: с увеличением номера РЗЭ в ряду Tb – Yb пределы замещений (x<sub>max</sub>) закономерно уменьшаются от 0,55 до 0,12 при 800 °С (*x*<sub>max</sub> = 0,53–0,55 для Tb, *x*<sub>max</sub> = 0,45 для Dy, *x*<sub>max</sub> = 0,38 для Ho, *x*<sub>max</sub> = 0,16-0,18 для Tm и x<sub>max</sub> = 0,12 для Yb). Проведено уточнение кристаллической структуры и определен элементный состав отдельных образцов. Выявлено, что расстояния Pb(2)—O(1,2,3) и Pb(2)—O(2), несмотря на малую степень замещения, уменьшаются, что свидетельствует о предпочтительном расположении ионов РЗЭ в позициях М(2) структуры апатита.

Ключевые слова: апатит, изоморфные замещения, редкоземельные элементы, кристаллическая структура.

## Введение

Внимание исследователей, работающих в области химического материаловедения и химии твердого тела, к проблеме изоморфных замещений обусловлено тем, что большинство современных неорганических материалов используются в виде не индивидуальных соединений, а твердых растворов. Вводя различные модифицирующие добавки и изменяя их количество можно влиять не только на такие характеристики структуры кристаллов, как размеры элементарных ячеек, межатомные расстояния, заселенность кристаллографических позиций, характер химической связи и др., но и на их свойства.

При выборе модифицирующих добавок необходимо иметь информацию о пределах изоморфных замещений модификатора в структуре основного компонента. Это связано с тем, что закономерное изменение свойств обычно происходит в области твердых растворов. Оптимальными свойства могут быть как при очень малых содержаниях модификатора (в люминесцентных и лазерных материалах – до 1 % редкоземельного элемента (РЗЭ)) [1], так и при существенно больших (в катализаторах) [2].

Соединения со структурой апатита состава  $M_{10}(ZO_4)_6X_2$  (где  $M = Na^+$ ,  $K^+$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$ ,  $Pb^{2+}$ ,  $Cd^{2+}$ ,  $Y^{3+}$ ,  $La^{3+}$ ,  $P3\Im$  и др.;  $Z = Si^{4+}$ ,  $Ge^{4+}$ ,  $P^{5+}$ ,  $V^{5+}$ ,  $As^{5+}$ ,  $S^{6+}$ ,  $Cr^{6+}$  и др.;  $X = OH^-$ ,  $F^-$ ,  $Cl^-$ ,  $Br^-$ ,  $I^-$ ,  $O^{2-}$ ,  $\Box$  (вакансии) характеризуются наличием разнообразных свойств, вследствие чего не только интенсивно исследуются, но и могут быть использованы в практике в качестве биоактивных, люминесцентных и лазерных материалов, сенсоров, твердых электролитов, сорбентов, катализаторов [1–4].

С кристаллохимической точки зрения формулу апатита можно представить в виде  $[M(1)]_4[M(2)]_6(ZO_4)_6X_2$ . Позиция M(1) (4f положение) имеет окружение из девяти атомов кислорода, входящих в состав тетраэдров ZO<sub>4</sub>. Позиция M(2) (6h положение) окружена шестью атомами кислорода, входящих в состав тетраэдров ZO<sub>4</sub> и атомом X (2a положение), находящимся в канале структуры. Катионы, заселяющие позицию M(2), формируют

<sup>\*</sup> E-mail: shulzhuk.b@donnu.edu.ua

<sup>©</sup> Е. И. Гетьман, Мухаммед А. Б. Абдуль Джабар, С. Н. Лобода, Б. В. Шульжук, 2017

треугольники, центральная ось которых совпадает с осью *с*. Повторение этой структуры вдоль оси *с* обеспечивает образование каналов, в которых могут располагаться и перемещаться ионы X [5]. Такая структура позволяет проводить изоморфные замещения различными атомами по местам структурных единиц M, Z и X.

К настоящему времени изучены замещения щелочноземельных металлов на РЗЭ (Ln) в соединениях со структурой апатита состава  $M_{10}(ZO_4)_6(OH)_2$  по схеме  $M^{2+} + OH^- \rightarrow Ln^{3+} + O^{2-}$ . При такой схеме замещения ионы РЗЭ заселяют в основном позиции M(2), а ионы кислорода заполняют каналы [6–8].

Несмотря на то, что ионный радиус свинца близок по размерам к радиусам ионов щелочноземельных элементов, в литературе отсутствуют сведения о замещении свинца на РЗЭ по этой схеме В соединениях Pb10(ZO4)6(OH)2. Это, по нашему мнению, может быть связано с тем, что каналы их структуры заполнены ионами ОН-, а атомы свинца, расположенные в позиции М(2), имеют неподеленные стереохимически активные 6s<sup>2</sup>электронные пары, направленные в центр гексагонального канала структуры, которые можно рассматривать как лиганды [9], препятствующие вхождению в каналы анионов кислорода.

Преимуществом апатитов свинца является существенно меньшая температура твердофазного синтеза и спекания (800 °С [10– 11]) в сравнении с апатитами щелочноземельных элементов (1200–1450 °С [6]), что упрощает методику получения и способствует образованию мелкодисперсных зерен.

Впервые об апатитах свинца состава  $Pb_8A_2(ZO_4)_6\square_2$  (A = Na, K, Rb, Cs, Tl, Ag; Z = P, V, As), сообщалось в [11], где приведены условия их синтеза и параметры элементарных ячеек. Их можно представить производными от апатитов свинца  $Pb_{10}(ZO_4)_6(OH)_2$  путем замещения по схеме:

 $Pb^{2+} + OH^{-} \rightarrow A^{+} + \Box$ .

Позднее они многократно исследовались методами рентгенофазового и рентгеноструктурного анализа [12–14], ИК, КР и ЯМР спектроскопии [15] и др. Наличие свободных от ОН<sup>-</sup> групп каналов обусловило катионную проводимость натрию [16].

 $Pb_8Na_2(ZO_4)_6\square_2$  по

Уточнение кристаллической структуры соединений Pb<sub>8</sub>A<sub>2</sub>(ZO<sub>4</sub>)<sub>6</sub>  $\Box_2$  показало, что они имеют структуру апатита (пространственная группа P6<sub>3</sub>/m), положение M2 полностью заполнено ионами  $Pb^{2+}$ , в то время как положение М1 в равной степени заполнено ионами  $Pb^{2+}$  и  $A^+$ , гексагональные каналы свободны. Срелние величины расстояний M1---O больше, чем M2—О примерно на 0,15 Å [15– 17]. Можно было ожидать, что меньшие по размеру ионы натрия будут занимать места в М2. Однако межатомные расстояния катионкатион положения M1 (3,44 Å) меньше аналогичных величин положения M2 (4,32 Å). Поэтому меньшие по заряду ионы натрия, заселяют положение M1, уменьшают энергию электростатического отталкивания между катионами в этом положении [15]. Характер связи в координационном полиздре М1 по большей степени ионный. Последнее следует из сравнения длин связей в Pb<sub>8</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub> с суммой радиусов катионов и анионов. Среднее расстояние M1—О составляет 2,687 Å. Это практически равно сумме ионного радиуса О<sup>2-</sup> и среднего арифметического значения ионных радиусов Na<sup>+</sup> и Pb<sup>2+</sup> (здесь и далее ионные радиусы приведены по [18]). В то же время в координационных полиэдрах M(2) связи Рb—О имеют преимущественно ковалентный характер [9], так как среднее расстояние M2—O (2,533 Å) меньше, чем сумма ионных радиусов О<sup>2-</sup> (1,40 Å) и Pb<sup>2+</sup> (1,19 Å). Последнее доказательство не бесспорно, поскольку в расчет суммы принимается и расстояние M2—O2 равное 2,225 Å, малая величина которого обусловлена тем, что позиция О(2) расположена в аксиальной плоскости пентагональной бипирамиды напротив неподеленной стереохимически активной пары электронов свинца, находящегося внутри этой бипирамиды. Поскольку взаимодействие стереохимически активной пары электронов свинца, расположенной также в аксиальной плоскости, с парой связи Pb—O(2), минимально, длина данной связи почти на 0,4 Å меньше. Если же не учитывать расстояние М(2)—О(2), то среднее расстояние M(2)—О составит 2,595 Å, что практически равно сумме ионных радиусов  $O^{2-}$  (1,40 Å) и  $Pb^{2+}$  (1,19 Å).

Ранее сообщалось [19] об изоморфных замещениях в Pb<sub>8</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub> $\Box_2$  свинца на небольшие количества P3Э от Се до Er с образованием Pb<sub>7,75</sub>Ln<sub>0,25</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>O<sub>0,125</sub> $\Box_{1,875}$  и об изучении их электрофизических свойств, спектров возбуждения и испускания люминесценции, что может найти практическое применение.

Нами в [20-24], на примере систем  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ , где Ln - P3Эглавным образом цериевой подгруппы, показано, что в соединении Pb<sub>8</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>, замеще-РЗЭ ние свинца на по схеме  $2 \text{ Pb}^{2+} + \Box \rightarrow 2 \text{ Ln}^{3+} + \text{O}^{2-}$  возможно и в более широком интервале составов, чем в [19], что обусловлено отсутствием в его структуре групп ОН-, препятствующих вхождению в каналы структуры апатита ионов О<sup>2-</sup> вследствие их отталкивания.

В настоящем сообщении приведены результаты изучения изоморфного замещения свинца на РЗЭ иттриевой подгруппы, главным образом на примере системы Pb<sub>(8-x)</sub>Tb<sub>x</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub> $\Box_{(2-x/2)}O_{(x/2)}$ .

## Экспериментальная часть

Для изучения изоморфного замещения синтезировались образцы состава  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  c x = 0; 0,02;0,04; 0,10; 0,20; 0,40; 0,60; 0,80; 1,0; 1,2; 1,4; 1,6; 1,8 и 2,0. В некоторых случаях использовались и промежуточные составы. Синтез образцов проводился методом твердофазных реакций. В качестве исходных реактивов использовали PbO, Na<sub>2</sub>CO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> и оксиды Tb, Dy, Ho, Tm и Yb (Sinbias). Поскольку при хранении многие из веществ поглощают воду и углекислый газ, перед использованием они были подвергнуты термической обработке для их удаления. Оксид свинца прокаливали при 400 °С в течение 4 часов, карбонат натрия при 500 °С в течение 3 часов, оксиды РЗЭ при 1050 °С в течение 4 часов. После прокаливания вещества были помещены в сушильный шкаф с недавно прокалённым силикагелем, охлаждены до комнатной температуры и сразу же использованы для взвешивания.

Исходные вещества взвешивались в заданных количествах на аналитических весах с точностью до 0,2 мг и смешивались при перетирании в агатовой ступке в течение 20–30 минут. Смеси помещались в алундовые тигли и прокаливались при 300 °С в течение 3 ч для удаления летучих веществ. Масса навесок составляла 1 г.

Выбор условий синтеза проводился путем многостадийного прокаливания смесей в интервале температур 400–800 °C с промежуточным перетиранием спека через каждые 100 °C. Контроль над протеканием взаимодействия проводился методом рентгенофазового анализа после прокаливания при каждой температуре. В результате были выбраны следующие условия твердофазного синтеза: конечная температура синтеза – 800 °C, время прокаливания при этой температуре определялось постоянством фазового состава и составляло в случае Tb – 247, Dy – 204, Ho – 208, Tm – 247 и Yb – 250 ч.

Рентгенофазовый анализ проводился на модернизированных дифрактометрах ДРОН-2 и ДРОН-3 с электронным управлением. Применялось СиК<sub>α</sub> излучение. Скорость вращения счетчика при обзорной съемке для установления фазового состава образцов составляла 2 градуса в минуту. Идентификация рентгенограмм, полученных образцов проводилась с использованием программы Match и базы данных PDF-2 (ICCD). Уточнение параметров элементарных ячеек проводили методом наименьших квадратов по 16 однозначно индицируемым линиям рентгенограмм, снятых при скорости вращения счетчика 1 градус в минуту. В качестве эталона использовался Si. Для уточнения кристаллической структуры методом Ритвельда использовался массив данных, полученный из порошковых рентгенограмм, снятых в интервале углов от  $2\theta = 15-140^\circ$ . Шаг сканирования и время экспозиции в каждой точке составляли соответственно 0,05° и 3 секунды. Уточнение проводились с использованием программы FULLPROF.2k (версия 3.40) [25] с графическим интерфейсом WinPLOTR [26]. В качестве начальных данных для уточнения кристаллической структуры использовали координаты соответствующих атомов в структуре гидроксиапатита кальция, которые представлены в работе [27].

Инфракрасные спектры регистрировали на спектрофотометре Perkin-Elmer Spectrum ВХ с преобразованием Фурье в интервале 400–4000 см<sup>-1</sup>. Образцы предварительно прокаливались при 600 °С до удаления адсорбированной воды, измельчились, и прессовались в таблетки вместе с КВг в соотношении 1:600. Давление прессования составляло 900 кПа.

Методом растровой электронной микроскопии на микроскопе JSM-6490LV (JEOL, Япония) с применением энергодисперсионного спектрометра INCA Penta FETx3 (OXFORD Instruments, Англия) проводился безэталонный элементный анализ, и оценивалось распределение элементов по их поверхности.

Рентгенограммы прокаленных образцов системы  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  приведены на рис. 1.



**Рис. 1.** Рентгенограммы образцов системы  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ 

Из рисунка видно, что в области составов до x = 0,04 на рентгенограммах присутствуют только рефлексы фазы со структурой апатита. В образцах состава x = 0,1-0,6 на рентгенограммах помимо рефлексов структуры апатита, обнаруживается еще рефлекс, интенсивность которого составляет около 3-5 % в сравнении с максимальной интенсивностью рефлекса структуры апатита. Так как его интенсивность практически не зависит от величины x, можно предположить, что это либо сверхструктурный рефлекс, либо рефлекс компонента, не входящего изоморфно в структуру. В области составов x = 0,6-2,0 на рентгенограммах присутствуют также рефлексы структуры фосфата тербия TbPO4, интенсивность которых с увеличением значения x возрастает.

Замещение катионом  $Tb^{3+}$ , который имеет меньший кристаллический ионный радиус (1,063 Å), чем  $Pb^{2+}$  (1,33 Å) [18] приводит к уменьшению параметров элементарной ячейки в области гомогенности (рис. 2). Предел замещения составляет x = 0,55, где x количество тербия в  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ .



**Рис. 2.** Зависимость параметров элементарных ячеек структуры апатита в системе  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  от состава (*x*)

Уточнение области растворимости в системе  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  проводилось также методом «исчезающей фазы». Для этого был построен график зависимости интенсивности пика (120) фазы TbPO<sub>4</sub> от состава, который представлен на рис. 3. Экстраполяция полученной прямой до пересечения с осью абсцисс дает величину x = 0,53.

Аналогичным образом были определены пределы замещений и для некоторых других систем с РЗЭ иттриевой подгруппы, которые составили x = 0.45 (Dy); x = 0.38 (Ho); x = 0.16-0.18 (Tm); x = 0.12 (Yb).



**Рис. 3.** Зависимость интенсивности отражения (120) TbPO<sub>4</sub> в системе  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  от состава (*x*)

Результаты уточнения кристаллической структуры для составов  $Pb_8Na_2(PO_4)_6\square_2$  и  $Pb_{7,96}Tb_{0,04}Na_2(PO_4)_6\square_{0,98}O_{0,02}$  представлены в табл. 1–2. Полученные результаты показывают, что ионы Na<sup>+</sup> остаются в позиции 1, а  $Tb^{3+}$  практически равномерно распределяются между позициями Pb(1) и Pb(2) структуры апатита, хотя их величины и близки к ошибке эксперимента.

**Таблица 1.** Заселенность для позиций Pb(1) и Pb(2) в структуре  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\Box_{2-x/2}O_{x/2}$ 

| Позиции атомов                | x = 0 | <i>x</i> = 0,04 |
|-------------------------------|-------|-----------------|
| Pb(1) (4 <i>f</i> -положение) | 2,034 | 1,981           |
| Na(1) (4 <i>f</i> -положение) | 1,966 | 2,000           |
| Tb(1) (4 <i>f</i> -положение) | —     | 0,019           |
| Pb(2) (6 <i>h</i> -положение) | 5,966 | 5,979           |
| Tb(2) (6 <i>h</i> -положение) | —     | 0,021           |
| Na(2) (6 <i>h</i> -положение) | 0,034 | _               |

Расстояния Pb(2)—O(1,2,3) и Pb(2)— O(2), несмотря на столь малую степень замещения, уменьшаются, Pb(1)—O(1,2,3) и Pb(2)—Pb(2) в пределах ошибки эксперимента постоянны (табл. 2). Аналогичное изменение расстояний Pb(2)—O(1,2,3) характерно и для систем с участием Dy, Ho и Tm, что свидетельствует о предпочтительном заполнении ионами P3Э позиции M(2) структуры апатита. В случае Yb они находятся в пределах ошибки измерений (0,01 Å).

Выборочный элементный анализ был проведен на содержание P, Pb, Tb и Na для составов с x = 0 и x = 0,1, результаты которого представлены в табл. 3.

**Таблица 2.** Некоторые средние межатомные асстояния (Å) в структуре Pb<sub>8-v</sub>Tb<sub>v</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>[-2-v<sub>2</sub>O<sub>v<sub>2</sub></sub>

| расстояния (А) в структу         | $pc + 0_{8-x} + 0_{x} + 0_{x} + 0_{2}$ | (1 04)6 - 2 - x/2 0x/2 |
|----------------------------------|----------------------------------------|------------------------|
| Средние межатомные<br>расстояния | x = 0                                  | <i>x</i> = 0,04        |
| Pb(1)—O(1,2,3)                   | 2,628(6)                               | 2,629(7)               |
| Pb(2)—O(1,2,3)                   | 2,509(9)                               | 2,456(9)               |
| Pb(2)—(OH),O(4)                  | _                                      | 2,510(4)               |
| Pb(2)—Pb(2)                      | 4,344(6)                               | 4,348(5)               |
| Pb(2)—O(2)                       | 2,25(3)                                | 2,14(3)                |

Из таблицы видно, что возгонка оксида свинца при синтезе либо отсутствует, либо практически не влияет на химический состав образцов.

**Таблица 3.** Результаты элементного анализа Pb<sub>(8-y)</sub>Tb<sub>y</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub> $\Box_{(2-y/2)}O_{(x/2)}$ , масс. %

| Р   |       | 2     | Pb    |       | Tb    |       | Na    |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| x   | теор. | эксп. | теор. | эксп. | теор. | эксп. | теор. | эксп. |
| 0   | 8,18  | 8,86  | 72,80 | 74,84 | -     | -     | 2,02  | 1,51  |
| 0,1 | 8,00  | 8,35  | 70,64 | 70,71 | 0,69  | 0,60  | 1,98  | 1,48  |

По данным сканирующей электронной микроскопии (рис. 4), элементы практически равномерно распределены по поверхности частицы, что свидетельствует об образовании однородного образца. Имеющаяся неравномерность связана с его рельефом.



**Рис. 4.** Микрофотография и распределение элементов по поверхности образца состава x = 0,1 системы  $Pb_{8-x}Tb_xNa_2(PO_4)_6\square_{2-x/2}O_{x/2}$ 

Фрагменты ИК-спектров некоторых образцов системы  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\Box_{2-x/2}O_{x/2}$  представлены на рис. 5. На ИК-спектрах присутствуют полосы фундаментальных колебаний фосфат-анионов, n<sub>1</sub> (445 см<sup>-1</sup>); n<sub>2</sub> (987, 1051); n<sub>3</sub> (539, 580). При возрастании величины *x* в пределах 0–0,04 их количество остается постоянным, лишь происходит некоторое увеличение волновых чисел на 3–9 см<sup>-1</sup>, что может свидетельствовать о вхождении в

структуру ионов тербия. Имеются также широкие полосы, обусловленные колебаниями в молекулах воды, в области 3500 и 1600 см<sup>-1</sup>.



**Рис. 5.** Фрагменты ИК-спектров образцов системы  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\square_{2-x/2}O_{x/2}$  в области 400–1900 и 3200–3800 см<sup>-1</sup>

Сопоставление пределов замещения ионов свинца на ионы РЗЭ иттриевой и цериевой подгруппы [20-24] показало, что с увеличением номера РЗЭ в ряду La-Yb пределы замещений (x) уменьшаются, от 1,4 до 0,12. Можно было ожидать, что это обусловлено только уменьшением радиусов ионов РЗЭ и, следовательно, увеличением различий в размерах замещающихся структурных единиц (размерного параметра). Однако нуждается в объяснении существенное уменьшение величин x (от 1,1 до 0,5), которое происходит при переходе от Gd до Tb. Оно превышает уменьшение в ряду La - Ce - Pr - Nd - Pm - Sm -Eu – Gd, величина которого составляет всего 0,3. По нашему мнению, это обусловлено, с одной стороны, особенностями структуры апатита Pb<sub>8</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>□<sub>2</sub>, а с другой – строением электронной оболочки атома тербия (и других РЗЭ иттриевой подгруппы), имеющего в отличие от РЗЭ цериевой подгруппы неподеленные 4f электронные пары. В этом соединении гексагональные каналы на самом деле не вакантны, а к ним примыкают стереохимически активные неподеленные 6s<sup>2</sup>-электронные пары свинца, направленные в их центры, которые можно рассматривать как лиганды [9], препятствующие вхождению в каналы, как катионов, так и анионов. При замещении по схеме 2 Pb<sup>2+</sup> +  $\Box \rightarrow 2$  Ln<sup>3+</sup> + O<sup>2-</sup> в каналы помещаются также анионы кислорода, а места свинца занимают катионы РЗЭ с направленными в центры каналов стереохимическими активными неподеленными 4f электронными парами, что также препятствует диффузии ионов по этим каналам. Этим обусловлено не только существенное уменьшение пределов замещения по сравнению с РЗЭ цериевой подгруппы, но и увеличение времени для достижения равновесия при синтезе твердых растворов с участие РЗЭ иттриевой подгруппы (до 250 ч) по сравнению с РЗЭ цериевой погруппы (50–116 ч) [20–24].

#### Ввыводы

Методом твердофазных реакций синтезирастворы рованы твердые систем  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ , где Ln = Tb, Dy, Ho, Tm и Yb при температуре 800 °C и времени прокаливания до 250 ч. Установлено, что пределы замещений (x) в указанных системах закономерно уменьшаются с увеличением номера РЗЭ и составляют 0,53-0,55 (Tb), 0,45 (Dy), 0,38 (Ho), 0,16–0,18 (Tm) и 0,12 (Уb) соответственно. Существенно меньшие области замещений в системах с РЗЭ иттриевой подгруппы, в сравнении с цериевой, объясняются влиянием не только размерного фактора, но и наличием стереохимически активных неподеленных 4f пар у атомов элементов иттриевой подгруппы.

В большинстве случаях, кроме системы с Yb, межатомные расстояния Pb(2)—O(1,2,3)и Pb(2)—O(2) уменьшаются, что свидетельствует о предпочтительном расположении ионов РЗЭ в позициях M(2).

#### Список литературы

1. Luminescence of  $Ce^{3+}$ -activated chalcogenide apatites  $Ca_{10}(PO_4)_6Y$  (Y = S, Se) / Zhang J., Liang H., Yu R., et al. *Mater. Chem. Phys.* 2009. Vol. 114, N 1. P. 242–246. DOI: 10.1016/j.matchemphys.2008.09.045

2. Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water / Kale S., Kahandal S., Disale S., et al. *Curr. Chem. Lett.* 2012. Vol. 1. P. 69–80. DOI: 10.5267/j.ccl.2012.3.002

3. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects / Grossin D., Rollin-Martinet S., Estournès C., et al. *Acta Biomater*. 2010. Vol. 6, N 2. P. 577– 585. DOI: 10.1016/j.actbio.2009.08.021

4. Yoshioka H., Nojiri Y., Tanase S. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. *Solid State Ionics*. 2008. Vol. 179, N 38. P. 2165–2169. DOI: 10.1016/j.ssi.2008.07.022

5. Брег У., Кларингбулл Г. Кристаллическая структура минералов. М.: Мир, 1967. 390 с.

6. Serret A., Cabanas M. V., Vallet-Regi M. Stabilization of calcium oxyapatites with lanthanum (III)-created anionic vacancies. *Chem. Mater.* 2000. Vol. 12, N 12. P. 3836–3841. DOI:10.1021/cm001117p

7. Fleet M. E., Liu X., Pan Y. Site preference of rare earth elements in hydroxyapatite  $[Ca_{10}(PO_4)_6(OH)_2]$ . *J. Solid State Chem.* 2000. Vol. 149, N 2. P. 391–398. DOI: 10.1006/jssc.1999.8563

8. Isomorphous Substitutions of Rare Earth Elements for Calcium in Synthetic Hydroxyapatites / Ardanova L. I., Get'man E. I, Loboda S. N. et al. *Inorg. Chem.* 2010. Vol. 49, N 22. P. 10687–10693. DOI: 10.1021/ic1015127

9. The crystal structure of lacunar apatite  $NaPb_4(PO_4)_3$  / Koumiri M., Oishi S., Sato S., et al. *Mater. Res. Bull.* 2000. Vol. 35. P. 503–513. DOI: 10.1016/S0025-5408(00)00254-3

10. Lattice parameters and cation distribution of solid solutions of calcium and lead hydroxyapatite / Verbeeck R., Lassuyt C., Heijligers H., et al. *Calcif. Tissue Int.* 1981. Vol. 33, N 1. P. 243–247. DOI:10.1007/BF02409444

11. Merker L., Wondratschek H. Neue Verbindungen mit apatitartiger Struktur II. Die Gruppe der Alkali-Blei-Verbindungen. Z. Kristallogr. Cryst. Mater. 1957. Vol. 109, N 1-6. P. 110–114. DOI:10.1524/zkri.1957.109.1-6.110

12. The silver lead apatite Pb<sub>8</sub>Ag<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>: hydrothermal preparation / Ternane R., Ferid M., Krib-Ariguib N., et al. *J. Alloys Compd.* 2000. Vol. 308, N 1-2. P. 83–86. DOI: 10.1016/S0925-8388(00)00882-3

13. Engel G. Infrarotspektroskopische und rontgenographische Untersuchungen von Bleihydroxylapatit, Bleioxyapatit und Bleialkaliapatiten. *J. Solid State Chem.* 1973. Vol. 6, N 2. 286–292. DOI:10.1016/0022-4596(73)90192-8

14. Mayer I., Cohen S., Matalon J. R. Solid Solution of  $Pb_8M_2(XO_4)_6$  Lead Alkali Apatites. *J. Solid State Chem.* 1981. Vol. 36, N 3. P. 271–274. DOI: 10.1016/0022-4596(81)90437-0

15. Toumi M., Mhiri T. Crystal structure and spectroscopic studies of  $Na_2Pb_8(PO_4)_6$ . J. Ceramic Soc. Japan. 2008. Vol. 116, N 1356. P. 904–908. DOI: 10.2109/jcersj2.116.904

16. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite / Chakroun-Ouadhour E., Ternane R., Hassen-Chehimi D. B., et al. *Mater*. *Res. Bull.* 2008. Vol. 43, N 8-9. P. 2451–2456. DOI: 10.1016/j.materresbull.2007.07.030

17. Etude Structurale D'Orthovanadates D'Alcalins et de Plomb Cristallisant avec la Structure Apatite Lacunaire / Azrour M., El Ammari L., Le Fur Y., et al. *J. Solid State Chem.* 1998. Vol. 141, N 2. P. 373–377. DOI: 10.1006/jssc.1998.7949

18. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr. A.* 1976. Vol. 32, N 5. P. 751–767. DOI:10.1107/S0567739476001551

19. Brixner L. H., Bierstedt P. E. Optical and electronic properties of some new rare earth-doped sodium apatites. *J. Solid State Chem.* 1975. Vol. 13, N 1-2. P. 24–31. DOI: 10.1016/0022-4596(75)90077-8

20. Изучение кристаллической структуры соединения состава  $Pb_{(8-x)}Na_2La_x(PO_4)_6O_{(x/2)}$  / Гетьман Е. И., Игнатов А. В., Лобода С. Н., и др. Вісник Донецького національного університету, Сер. А: Природничі науки. 2009. № 2. С. 217–219.

21. Твердые растворы в системе Рb<sub>8-х</sub>Pr<sub>x</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>□<sub>2-x/2</sub>O<sub>x/2</sub> / Игнатов А. В., Гетьман Е. И., Лобода С. Н., и др. Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. 2011. № 17. С. 71–76.

22. Study the crystal structure of the composition  $Pb_{8-x}Eu_xNa_2(PO_4)_6\square_{2-x/2}O_{x/2}$  / Getman E. I., Ignatov A. V., Abdul Jabar M. A. B., et al. Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия». 2011. Т. 24, № 63. С. 48–56.

23. Твердые растворы в системе  $Pb_{(8-x)}Nd_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  / Гетьман Е. И., Игнатов А. В., Лобода С. Н., и др. *Укр. хим. журн.* 2011. Т. 77, № 9–10. С. 30–34.

24. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite  $Pb_8Na_2(PO_4)_6$  / Get'man E. I., Loboda S. N., Ignatov A. V., et. al. *Inorg. Chem.* 2016. Vol. 55, N 5. P. 2165–2173. DOI: 10.1021/acs.inorgchem.5b02571

25. Rodríguez-Carvajal J. Program FullProf.2k, Version 2.20. 2002. Laboratoire Léon Brillouin (CEA-CNRS), France.

26. Roisnel T. WinPLOTR: a Windows tool for powder diffraction patterns analysis. *Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7).* 2000. Vol. 378–381. P. 118–123. DOI: 10.4028/www.scientific.net/MSF.378-381.118

27. Wilson R. M., Elliot J. C., Dowker S. E. P. Rietveld refinement of the crystallographic structure of human dental enamel apatites. *Amer. Mineral.* 1999. Vol. 84. P. 1406–1414. DOI: 10.2138/am-1999-0919

Рукопис надійшов до редакції 16.02.2017

#### УДК 548.32: 549.753.11: 546(817'33'663'664'665'667'668)

#### Ізоморфні заміщення у системі Pb<sub>(8-x)</sub>Ln<sub>x</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>□<sub>(2-x/2)</sub>O<sub>(x/2)</sub>, де Ln = Tb, Dy, Ho, Tm i Yb

Є. І. Гетьман, Мухаммед А. Б. Абдуль Джабар, С. М. Лобода, Б. В. Шульжук

Сполуки зі структурою апатиту складу  $M_{10}(ZO_4)_6X_2$  (де  $M = Na^+$ ,  $K^+$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$ ,  $Pb^{2+}$ ,  $Cd^{2+}$ ,  $Y^{3+}$ ,  $La^{3+}$ , P3E тощо;  $Z = Si^{4+}$ ,  $Ge^{4+}$ ,  $P^{5+}$ ,  $V^{5+}$ ,  $As^{5+}$ ,  $S^{6+}$ ,  $Cr^{6+}$  тощо;  $X = OH^-$ ,  $F^-$ ,  $Cl^-$ ,  $Br^-$ ,  $I^-$ ,  $O^{2-}$ ,  $\Box$  (вакансії) характеризуються наявністю різноманітних властивостей, унаслідок чого не тільки інтенсивно досліджуються, проте й можуть бути використані у практиці в якості біоактивних, люмінесцентних і лазерних матеріалів, сенсорів, твердих електролітів, сорбентів, каталізаторів. Із кристалохімічної точки зору формулу апатиту можна подати у вигляді  $[M(1)]_4[M(2)]_6(ZO_4)_6X_2$ . Позиція M(1) (4f положення) має оточення з дев'яти атомів Оксигену, які входять до складу тетраедрів ZO<sub>4</sub>. Позиція M(2) (6h положення) оточена шістьма атомами Оксигену, які входять до складу тетраедрів ZO<sub>4</sub> і атомом X (2a положення), що знаходиться в каналі структури. Катіони, які заселяють позицію M(2), формують трикутники, центральна вісь яких співпадає з віссю c. Повторення цієї структури вздовж вісі c забезпечує утворення каналів, у яких можуть розташовуватися й переміщуватися іони X. Така структура дозволяє проводити ізоморфні заміщення різними атомами за місцями структурних одиниць M, Z та X. У представленій роботі приведено результати дослідження ізоморфного заміщення Плюмбума на РЗЕ ітрієвої підгрупи, головним чином на прикладі системи Pb<sub>(8-x</sub>, Tb<sub>x</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>[(2-x/2)O<sub>(x/2</sub>).

Твердофазним методом синтезовано зразки складу  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ , де Ln = Tb, Dy, Ho, Tm и Yb ( $0 \le x \le 2,0$ ). В отриманих системах рентгенофазовим аналізом, в тому числі з використанням алгоритму Рітвельда, скануючою електронною мікроскопією та методом IЧ–спектроскопії досліджено ізоморфне заміщення Плюмбуму на рідкісноземельні елементи (P3E) ітрієвої підгрупи за схемою:  $2 Pb^{2+} + \square \rightarrow 2 Ln^{3+} + O^{2-}$ . Встановлено, що однофазні зразки утворюються в діапазоні від x = 0,00 до x = 0,55. За зміною параметрів елементарної комірки від складу і методом «фази, що зникає» встановлено межі заміщення Плюмбуму на P3E: зі збільшенням номера P3E в ряду Tb – Yb межі заміщень ( $x_{max}$ ) закономірно зменшуються від 0,55 до 0,12 за 800 °C ( $x_{max} = 0,53-0,55$  для Tb,  $x_{max} = 0,45$  для Dy,  $x_{max} = 0,38$  для Ho,  $x_{max} = 0,16-0,18$  для Tm та  $x_{max} = 0,12$  для Yb). Проведено уточнення кристалічної структури та визначено елементний склад окремих зразків. Виявлено, що відстані Pb(2)—O(1,2,3) та Pb(2)—O(2), незважаючи на малу ступінь заміщення, зменшуються, що свідчить про заселеність іонами P3E переважно позиції M(2) структури апатиту.

Ключові слова: апатит, ізоморфні заміщення, рідкісноземельні елементи, кристалічна структура.

# Isomorphous substitutions in the system $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ , where Ln = Tb, Dy, Ho, Tm, and Yb E. I. Get'man, Mohammed A. B. Abdul Jabar, S. N. Loboda, B. V. Shulzhuk

Vasyl' Stus Donetsk National University, Faculty of Chemistry, Vinnytsia, Ukraine

Compounds with apatite structure having the composition  $M_{10}(ZO_4)_6X_2$  (where  $M = Na^+$ ,  $K^+$ ,  $Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$ ,  $Pb^{2+}$ ,  $Cd^{2+}$ ,  $Y^{3+}$ ,  $La^{3+}$ , REE etc.;  $Z = Si^{4+}$ ,  $Ge^{4+}$ ,  $P^{5+}$ ,  $V^{5+}$ ,  $As^{5+}$ ,  $S^{6+}$ ,  $Cr^{6+}$  etc.;  $X = OH^-$ ,  $F^-$ ,  $Cl^-$ ,  $Br^-$ ,  $I^-$ ,  $O^{2-}$ ,  $\Box$  (vacancies) are characterized by various properties. As a result, they are intensively studied and may be used as bioactive, luminescent and laser materials, sensors, solid electrolytes, sorbents, catalysts. In crystal chemistry the apatite formula can be represented as  $[M(1)]_4[M(2)]_6(ZO_4)_6X_2$ . M(1) (*4f* position) is surrounded by nine oxygen atoms, which are the part of  $ZO_4$  tetrahedra. M(2) (*6h* position) is surrounded by six oxygen atoms being the part of  $ZO_4$  tetrahedra and X atom (position *2a*) located in the structure channel. Cations in the position M(2) form triangles, their central axis coinciding with axis *c*. Repeating of this structure along axis *c* enables the formation of channels, in which X ions can be located and move. Such structure allows to make isomorphous substitution by different atoms in structural units M, Z, and X. The present study represents the results of isomorphous substitution of lead by REE of yttrium subgroup, which was mainly realized in the system  $Pb_{(8-x)}Tb_xNa_2(PO_4)_6\Box_{(2-x/2)}O_{(x/2)}$ .

Substitution of rare-earth elements (REEs, Ln: Tb, Dy, Ho, Tm, and Yb) for lead in the lacunary apatite  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  ( $0 \le x \le 2$ ) in accordance to scheme  $2 Pb^{2+} + \square \rightarrow 2 Ln^{3+} + O^{2-}$  has been studied by X-ray powder diffraction (including the Rietveld refinement), scanning electron microscopy and FT-IR spectroscopy. Single phase solid solutions  $Pb_{(8-x)}Ln_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  are formed in the range from x = 0.00 to x = 0.55. By changing the parameters of elementary cells from the composition and the phase-vanishing method the solubility limits  $x_{max}$  of REE decreases with an REE atomic number increasing from 0.55 till 0.12 at 800 °C ( $x_{max} = 0.53-0.55$  for Tb,  $x_{max} = 0.45$  for Dy,  $x_{max} = 0.38$  for Ho,  $x_{max} = 0.16-0.18$  for Tm, and  $x_{max} = 0.12$  for Yb) were established. Refinements of X-ray diffraction patterns by the Rietveld method show that substitution lead to Pb(2)—O(1,2,3) and Pb(2)—O(2) atomic distances decreases. This study shows that REE atoms substitute for Pb preferentially at the Pb(2) sites of the apatite structure.

Keywords: apatite, isomorphous substitution, rare-earth elements, crystal structure.

#### **References:**

1. Zhang, J.; Liang, H.; Yu, R.; Yuan, H.; Su, Q. Luminescence of  $Ce^{3+}$ -activated chalcogenide apatites  $Ca_{10}(PO_4)_6Y$  (Y = S, Se). *Materials Chemistry and Physics*. **2009**, *114* (1), 242–246 DOI: 10.1016/j.matchemphys.2008.09.045.

2. Kale, S.; Kahandal, S.; Disale, S.; Jayaram, R. Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water. *Current Chemistry Letters*. **2012**, *1* (2), 69–80 DOI: 10.5267/j.ccl.2012.3.002.

Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

3. Grossin, D.; Rollin-Martinet, S.; Estournès, C.; Rossignol, F.; Champion, E.; Combes, C.; Rey, C.; Geoffroy, C.; Drouet, C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and micro-structure aspects. *Acta Biomaterialia*. **2010**, *6* (2), 577–585 DOI: 10.1016/j.actbio.2009.08.021.

4. Yoshioka, H.; Nojiri, Y.; Tanase, S. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. *Solid State Ionics*. **2008**, *179* (38), 2165–2169 DOI: 10.1016/j.ssi.2008.07.022.

5. Brehh, U. L.; Klarinhbull, H. F. Kristallicheskaya struktura mineralov [The Crystal Structure of Minerals]; Moscow: Mir, 1967. (in Russian)

6. Serret, A.; Cabanas, M. V.; Vallet-Regi, M. Stabilization of calcium oxyapatites with lanthanum (III)-created anionic vacancies. *Chemistry of Materials*. **2000**, *12* (12), 3836–3841 DOI: 10.1021/cm001117p.

7. Fleet, M. E.; Liu, X.; Pan, Y. Site preference of rare earth elements in hydroxyapatite [Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>]. *Journal of Solid State Chemistry*. **2000**, *149* (2), 391–398 DOI: 10.1006/jssc.1999.8563.

8. Ardanova, L. I.; Get'Man, E. I.; Loboda, S. N.; Prisedsky, V. V.; Tkachenko, T. V.; Marchenko, V. I.; Antonovich, V. P.; Chivireva, N. A.; Chebishev, K. A.; Lyashenko, A. S. Isomorphous Substitutions of Rare Earth Elements for

Calcium in Synthetic Hydroxyapatites. *Inorganic Chemistry*. **2010**, *49* (22), 10687–10693 DOI: 10.1021/ic1015127. 9. Koumiri, M. E.; Oishi, S.; Sato, S.; Ammari, L. E.; Elouadi, B. The crystal structure of the lacunar apatite

NaPb<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>. *Materials Research Bulletin*. **2000**, *35* (4), 503–513 DOI: 10.1016/s0025-5408(00)00254-3.

10. Verbeeck, R. M. H.; Lassuyt, C. J.; Heijligers, H. J. M.; Driessens, F. C. M.; Vrolijk, J. W. G. A. Lattice parameters and cation distribution of solid solutions of calcium and lead hydroxyapatite. *Calcified Tissue International*. **1981**, *33* (1), 243–247 DOI: 10.1007/bf02409444.

11. Merker, L.; Wondratschek, H. Neue Verbindungen mit apatitartiger Struktur II. Die Gruppe der Alkali-Blei-Verbindungen. Zeitschrift für Kristallographie. **1957**, 109 (1-6), 110–114 DOI: 10.1524/zkri.1957.109.1-6.110. (In German)

12. Ternane, R.; Ferid, M.; Kbir-Ariguib, N.; Trabelsi-Ayedi, M. The silver lead apatite Pb<sub>8</sub>Ag<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>: hydrothermal preparation. *Journal of Alloys and Compounds*. **2000**, *308* (1-2) DOI: 10.1016/S0925-8388(00)00882-3.

13. Engel, G. Infrarotspektroskopische und röntgenographische Untersuchungen von Bleihydroxylapatit, Bleioxyapatit und Bleialkaliapatiten. *Journal of Solid State Chemistry*. **1973**, 6 (2), 286–292 DOI: 10.1016/0022-4596(73)90192-8. (In German)

14. Mayer, I.; Cohen, S.; Matalon, J. R. Solid solutions of  $Pb_8M_2(XO_4)_6$  lead alkali apatites. *Journal of Solid State Chemistry*. **1980**, *35* (2), 293–294 DOI: 10.1016/0022-4596(80)90517-4.

15. Toumi, M.; Mhiri, T. Crystal structure and spectroscopic studies of Na<sub>2</sub>Pb<sub>8</sub>(PO<sub>4</sub>)<sub>6</sub>. *Journal of the Ceramic Society of Japan.* **2008**, *116* (1356), 904–908 DOI: 10.2109/jcersj2.116.904.

16. Chakroun-Ouadhour, E.; Ternane, R.; Hassen-Chehimi, D. B.; Trabelsi-Ayadi, M. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite. *Materials Research Bulletin*. **2008**, *43* (8-9), 2451–2456 DOI: 10.1016/j.materresbull.2007.07.030.

17. Azrour, M.; Ammari, L. E.; Fur, Y. L.; Elouadi, B. Etude Structurale D'Orthovanadates D'Alcalins et de Plomb Cristallisant avec la Structure Apatite Lacunaire. *Journal of Solid State Chemistry*. **1998**, *141* (2), 373–377 DOI: 10.1006/jssc.1998.7949. (In French)

18. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A.* **1976**, *32* (5), 751–767 DOI: 10.1107/s0567739476001551.

19. Brixner, L. H.; Bierstedt, P. E. Optical and electronic properties of some new rare earth-doped sodium apatites. *Journal of Solid State Chemistry*. **1975**, *13* (1-2), 24–31 DOI: 10.1016/0022-4596(75)90077-8.

20. Get'man, E. I.; Ignatov, A. V.; Loboda, S. N.; Abdul Jabar, M. A. B.; Zhegailo, A.O.; Glukhova, A. S. Izuchenie kristallicheskoi struktury soedineniia sostava  $Pb_{(8-x)}Na_2La_x(PO_4)_6O_{(x/2)}$  [Study the crystal structure of the composition  $Pb_{(8-x)}Na_2La_x(PO_4)_6O_{(x/2)}$ ]. *The Bulletin of DonNU. Series A: Natural Sciences / Visnyk Donetskoho natsional-noho universytetu, Seriya A: Pryrodnychi nauky.* **2009**, No. 2, 217–219. (In Russian)

21. Ignatov, A. V.; Get'man, E. I.; Loboda, S. N.; Abdul Jabar, M. A. B.; Yablochkova N. V. Tverdye rastvory v sisteme  $Pb_{8-x}Pr_xNa_2(PO_4)_6\square_{2-x/2}O_{x/2}$  [Solid solutions in the system  $Pb_{(8-x)}Pr_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$ ]. *The Bulletin of DonNTU. The Chemical Series / Naukovi Praci DonNTU. Seriya: Khimiya i khimichna tehnologiya*. **2011**, *17*, 71–76. (In Russian)

22. Get'man, E. I.; Ignatov, A. V.; Abdul Jabar, M. A. B.; Loboda, S. N. Study the crystal structure of the composition  $Pb_{8-x}Eu_xNa_2(PO_4)_6\square_{2-x/2}O_{x/2}$ . The Bulletin of the Taurida National V.I. Vernadsky University. Series "Biology, chemistry" / Uchenye zapiski Tavricheskogo nacional'nogo universiteta im. V.I. Vernadskogo. Serija "Biologija, himija". **2011**, 24 (63), 48–56. (In Russian)

23. Get'man, E. I.; Ignatov, A. V.; Loboda, S. N.; Abdul Jabar, M. A. B.; Pasechnik, L. V.; Zhegailo, A. O. Tverdye rastvory v sisteme  $Pb_{(8-x)}Nd_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  [Solid solutions in  $Pb_{(8-x)}Nd_xNa_2(PO_4)_6\square_{(2-x/2)}O_{(x/2)}$  system]. Ukrainskii khimicheskii zhurnal. **2011**, 77 (9-10), 30–34. (In Russian)

24. Get'Man, E. I.; Loboda, S. N.; Ignatov, A. V.; Prisedsky, V. V.; Abdul Jabar, M. A. B.; Ardanova, L. I. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb<sub>8</sub>Na<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>. *Inorganic Chemistry*. **2016**, *55* (5), 2165–2173 DOI: 10.1021/acs.inorgchem.5b02571.

Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

25. Rodríguez-Carvajal, J. Program FullProf.2k, Version 2.20. 2002. Laboratoire Léon Brillouin (CEA-CNRS), France.

26. Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. *Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7).* **2001**, *378-381*, 118–123 DOI: 10.4028/www.scientific.net/msf.378-381.118.

27. Wilson, R. M.; Elliott, J. C.; Dowker, S. E. P. Rietveld refinement of the crystallographic structure of human dental enamel apatites. *American Mineralogist*. **1999**, *84* (9), 1406–1414 DOI: 10.2138/am-1999-0919.

К вопросу расчета пределов замещений в твердых растворах монацитов редкоземельных элементов состава La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, где Ln = Pr – Dy / E. И. Гетьман, Л. Б. Игнатова, С. В. Радио // Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки. 2017. № 2. С. 33–40

УДК 546(786+47): 546.05

# К ВОПРОСУ РАСЧЕТА ПРЕДЕЛОВ ЗАМЕЩЕНИЙ В ТВЕРДЫХ РАСТВОРАХ МОНАЦИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СОСТАВА La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, ГДЕ Ln = Pr – Dy

Е. И. Гетьман, Л. Б. Игнатова, С. В. Радио \*

Донецкий национальный университет имени Васыля Стуса, г. Винница, Украина

На основании использования кристаллохимического метода определения энергии смешения твердых растворов В. С. Урусова и уравнения для регулярных растворов Р. Беккера представлены графики для оперативного определения пределов замещений в твердых растворах со структурой монацита La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, где Ln – редкоземельные элементы ряда Pr – Dy. Предложенные графические зависимости позволяют определять пределы замещений по заданным температурам распада твердых растворов либо определять температуры распада (стабильности) твердых растворов по заданным пределам замещений без использования каких-либо других параметров. Графические зависимости могут быть полезны как специалистам, работающим в области иммобилизации радиоактивных отходов для определения максимального количества входящего в структуру поглотителя радиоактивного вещества, так и в области создания новых люминесцентных, лазерных и других материалов, содержащих небольшое количество активатора.

Ключевые слова: структура монацита, твердые растворы, фосфаты, редкоземельные элементы.

#### Введение

В настоящее время актуальной задачей является поиск новых радиационно устойчивых материалов для использования в качестве матриц для захоронения различных радиоактивных отходов, в том числе из атомных реакторов, а также из демонтированного ядерного оружия, так как срок службы применяемых для этих целей алюмофосфатных или боросиликатных стекол составляет всего до 30-40 лет [1]. С этой целью интенсивно исследуются твердые растворы ортофосфатов «легких» редкоземельных элементов (РЗЭ) ряда La – Dy со структурой монацита, так как размеры и заряды ионов РЗЭ и актинидов Ри, Ат и Ст близки, они изоструктурны и образуют между собой непрерывные ряды твердых растворов. Отходы ядерных реакторов содержат также до 35 мас. % оксидов радиоактивных изотопов РЗЭ [2], которые также могут быть захоронены в составе ортофосфатов РЗЭ со структурой монацита.

Кроме того, ортофосфаты РЗЭ отвечают большинству других требований к таким материалам: высокая химическая устойчивость, высокие температуры плавления (около 2 000 °C), высокая механическая прочность, а главное, радиационная стойкость. Поскольку несмотря на содержание радиоактивных элементов, они сохранились в природе в течение нескольких сотен миллионов лет [2-3]. Последнее обусловлено способностью монацита самовосстанавливать свою кристаллическую структуру и свойства после радиационной деградации при сравнительно небольшом повышении температуры [4]. Температура, выше которой материал не переходит в аморфное состояние при облучении потоком тяжелых частиц для монацита составляет всего 358 °С [5]. Но проводить захоронение актинидов в составе индивидуальных ортофосфатов не целесообразно, так как, например, PuPO<sub>4</sub> разлагается с образованием соответствующих оксидов при нагревании в атмосфере азота уже при 1100 °С [6]. В то время как плутоний в составе твердых растворов ортофосфатов РЗЭ стабилизируется при более высоких температурах. Однако для использования твердых растворов на основе ортофосфатов РЗЭ необходимо знать равновесные пределы растворимости при заданных температурах или температуры распада для заданных составов.

<sup>\*</sup> E-mail: radio@donnu.edu.ua

<sup>©</sup> Е.И.Гетьман, Л.Б.Игнатова, С.В. Радио, 2017

Ранее мы предложили оперативно определять их из диаграмм термодинамической стабильности (зависимости температур распада  $La_{1-x}Ln_xPO_4$  от номера РЗЭ) [7]. Однако для промежуточных составов (при значениях *x*, отличных от 0,02; 0,05; 0,1; 0,2; 0,5) давалась только их приближенная оценка, так как она проводилась путем интерполяции в областях нелинейной зависимости температуры распада твердого раствора от состава.

В данной работе мы предложили определять пределы растворимости РЗЭ в La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub> только по температуре распада или температуры распада только по пределам растворимости без использования каких-либо других дополнительных данных из графических взаимозависимостей, описываемых уравнением Р. Беккера [8].

### Результаты и их обсуждение

Теоретический анализ. Для расчета пределов замещений, температур распада и оценки стабильности твердых растворов необходимо знание параметров взаимодействия (энергии смешения) твердых растворов. Существует несколько как теоретических, так и экспериментальных методов их определения. За период 2007-2017 гг. они неоднократно использовались для расчета параметров взаимодействия в фосфатных системах  $La_{1-x}Ln_xPO_4$  (Ln = Eu, Gd). Это было обусловлено тем, что твердые растворы этих систем являются перспективными матрицами для захоронения радиоактивных отходов, превосходящими по многим параметрам алюмофосфатные или боросиликатные стекла, применяемые в настоящее время. В [9] были сопоставлены параметры взаимодействия (энергии смешения, Q) в вышеприведенных системах, приведенные в табл. 1.

Как видно из табл. 1, имеется большой разброс в параметрах взаимодействия. Очевидно, что наиболее достоверные результаты дают средние величины. Они равны 8,3 кДж/моль и 13,5 кДж/моль соответственно для La<sub>1-x</sub>Eu<sub>x</sub>PO<sub>4</sub> и La<sub>1-x</sub>Gd<sub>x</sub>PO<sub>4</sub>.

Для системы  $La_{1-x}Eu_xPO_4$  наиболее близкое значенеие  $W = 6,2 \ \kappaДж/моль \ \kappa$  среднему ( $W = 8,3 \ \kappaДж/моль$ ) получено методом *Ab initio*/strain energy. Однако этот метод для системы  $La_{1-x}Gd_xPO_4$  дает величину  $W = 8,6 \ \kappa \ Д ж/моль$ , существенно отличающуюся от средней ( $W = 13,5 \ \kappa \ Д ж/моль$ ).

| <b>Габлица 1.</b> Параметры взаимодействия ( <i>Q</i> , кДж/моль) |
|-------------------------------------------------------------------|
| для систем $La_{1-x}Eu_xPO_4$ и $La_{1-x}Gd_xPO_4$ , полученные   |
| разными авторами за период 2007_2017 гг [9]                       |

| pusitisti abroputiti su ne                                 | phod 2001 2                                       |                    |
|------------------------------------------------------------|---------------------------------------------------|--------------------|
| Метод, авторы работ (год опубликования)                    | La <sub>1-x</sub> Eu <sub>x</sub> PO <sub>4</sub> | $La_{1-x}Gd_xPO_4$ |
| <i>Ab initio</i> , Li <i>et al</i> . (2014)                | 13,4                                              | 16,5               |
| Strain energy, Mogilewsky (2007)                           | 5,2                                               | 6,8                |
| Drop calorimetry, Popa <i>et al.</i> (2007)                | $14\pm 8$                                         | $24\pm9$           |
| <i>Ab initio</i> /strain energy,<br>Kowalski and Li (2016) | 6,2                                               | 8,6                |
| Drop solution, Neumeier <i>et al.</i> (2017)               | $2,5 \pm 2,6$                                     | 11,4 ± 3,1         |

Аналогичным образом методом Drop solution для системы  $La_{1-x}Gd_xPO_4$  получено наиболее близкое к среднему (W = 13,5 кДж/моль) значение W = 11,4 кДж/моль. В то же время, для системы  $La_{1-x}Eu_xPO_4$  этим же методом получено W = 2,5 кДж/моль, т. е. существенно меньше среднего (W = 8,3 кДж/моль). Таким образом ни одному из вышеприведенных методов нельзя отдать предпочтение при определении энергии смешения.

Основные формулы метода В. С. Урусова. В [7] для расчетов энергии смешения в системах  $La_{1-x}Ln_xPO_4$  был применен принципиально иной способ расчета, разработанный еще в середине 70-х годов XX века В. С. Урусовым на основе кристаллоэнергетической теории изоморфной смесимости [10–11]. С помощью данного метода в [7] были получены более близкие к вышеприведенным средним величинам параметры взаимодействия (энергии смешения по В. С. Урусову) для  $La_{1-x}Eu_xPO_4$  и  $La_{1-x}Gd_xPO_4$ , равные соответственно 9,8 кДж/моль (среднее 8,3) и 13,9 кДж/моль (среднее 13,5).

В развитом В. С. Урусовым [10–11] кристаллоэнергетическом подходе к определению пределов изоморфных замещений основной проблемой является нахождение энергии смешения (Q). После ее определения, в случае если относительная разность замещающихся структурных единиц меньше 0,1, не существует принципиальных препятствий для вычисления температур распада твердых растворов по известным пределам замещения по уравнению регулярных растворов Беккера [8]:

$$-\frac{1-2x}{\ln\left[\frac{x}{1-x}\right]} = \frac{NkT}{Q},$$

где x – предельный состав твердого раствора; k – постоянная Больцмана; N – число Авогадро, T – температура, Q – энергия смешения. Однако расчет пределов замещений по уравнению Беккера возможен либо методом подбора, либо с помощью специально построенной для этой цели графической взаимосвязи их с температурой распада. В данной работе предлагается второй способ.

В нашем случае максимальная величина  $\Delta R/R_1 = 0.034$  [7], поэтому правомерно использовать приближение регулярных растворов и уравнение Р. Беккера правомерно. Кривая распада твердого раствора в зависимости от температуры в таком случае будет практически симметричной. Ее особенностью является резкое возрастание температуры распада с увеличением значений х при малых концентрациях растворенного компонента и незначительное изменение в средней части зависимости (рис. 1 [12]). В связи с этим, для повышения точности расчетов (в рамках выбранного приближения) мы предлагаем использографики малых вать отдельные для (x = 0,005 - 0,05)И больших количеств (x > 0,05) растворенного вещества. Кроме того, с той же целью РЗЭ разделили на 2 ряда: Pr – Sm и Eu – Dy.

Хотя ортофосфаты РЗЭ являются тернарными соединениями, но химическая связь Р— О намного прочнее связи Ln—О (в структуре монацита среднее межатомное расстояние Се—О равно 2,559 Å, а Р—О равно 1,540 Å [13]), их можно отнести к псевдобинарным соединениям, построенным из катионов Ln<sup>3+</sup> и анионов PO<sub>4</sub><sup>3-</sup> и рассчитывать энергию смешения Q в псевдобинарном приближении по методу В. С. Урусова:

$$Q = C \cdot m \cdot n \cdot Z_1 \cdot Z_2 \cdot (\Delta R/R_1)^2 + + 332000 \cdot m \cdot Z_1 \cdot Z_2 \cdot \alpha \cdot (\Delta \varepsilon)^2 / 2R_1.$$

где: *С* – эмпирический параметр, зависящий от сжимаемости кристалла, кал/моль; *m* – число структурных единиц в соединении (для

монацита:  $Ln^{3+}$  и  $PO_4^{3-}$ ); *n* – координационное число замещающейся структурной единицы в псевдобинарном приближении;  $Z_1$ ,  $Z_2$  – модули зарядов структурных единиц  $Ln^{3+}$  и  $PO_4^{3-}$ .



**Рис. 1.** Кривая распада регулярного твердого раствора [12]

Величина  $\Delta R = R_{\text{La}} - R_{\text{Ln}}$  определяется как разность межатомных расстояний Ln—P в компонентах систем LaPO<sub>4</sub> – LnPO<sub>4</sub>, Å;  $R_1$  – меньшее межатомное расстояние Ln—P, Å;  $\Delta R/R_1$  – относительная разность межатомных расстояний Ln—P в компонентах;  $\alpha$  – приведенная константа Маделунга в псевдобинарном приближении;  $\Delta \varepsilon$  – разность степеней ионности химической связи Ln<sup>3+</sup>—PO<sub>4</sub><sup>3-</sup> в компонентах. Величина  $C = 30\ 000\ \text{кал/моль}$ [10–11], m = 2,  $Z_1 = 3$ ,  $Z_2 = 3$ .

Координационные числа (n) катионов ( $Ln^{3+}$ ) и комплексных анионов ( $PO_4^{3-}$ ) в монаците для псевдобинарной модели равны 6. Средние межатомные расстояния лантанид фосфор  $R_{Ln}$  рассчитывали по величинам ионных радиусов РЗЭ, используя зависимости для структуры монацита, приведенные в [13]:

$$R_{(\text{Ln}-P)(1)} = 1,9337 + 1,0533 \cdot r_{Sh};$$
  

$$R_{(\text{Ln}-P)(2)} = 2,6041 + 0,5647 \cdot r_{Sh},$$

где *r*<sub>Sh</sub> – эффективный ионный радиус РЗЭ по Шеннону для координационного числа 9 [14], *R*<sub>(Ln—P)(1)</sub>, *R*<sub>(Ln—P)(2)</sub> – межатомные расстояния Ln—P для двух различных позиций РЗЭ.

Приведенную константу Маделунга рассчитывали по формуле Хоппе [15]:

$$(\alpha / \rho)^2 + \alpha = 1.81,$$

где  $\alpha$  – константа Маделунга,  $\rho$  – координационное число для псевдобинарной модели. Откуда получили значение  $\alpha = 1,73$ .

Степени ионности химической связи є рассчитывали по разности электроотрицательностей (ЭО) катиона и аниона. Однако шкала Л. Полинга, приведенная в [16], недостаточно точна для расчета разности ЭО в случае взаимозамещений РЗЭ ввиду того, что они близки к погрешности определения ЭО. В тоже время имеется другая, более точная, шкала, созданная сравнительно недавно на основе кристаллографических данных более 1 000 соединений лантанидов [17]. В этой шкале значения ЭО примерно в 1,5 раза большие, чем по шкале Л. Полинга, поэтому они нуждаются в согласования со шкалой ЭО по Л. Полингу. После пересчета масштаба шкалы [17] к масштабу шкалы Л. Полинга нами получен ряд с закономерным изменением ЭО. Но величина ЭО для Еи оказалась существенно завышенной и для нее принято среднее значение между Sm и Gd. Электроотрицательность радикала PO4<sup>3-</sup> взята по С. С. Бацанову равной 3,7 [18].

Оценка области стабильности твердых растворов ортофосфатов РЗЭ со структурой монацита. Используя рассчитанные в [7] по вышеприведенной методике энергии смешения, мы определили по уравнению Р. Беккера значения температур распада твердых растворов (табл. 2), которые применили для построения графических зависимостей температур распада твердых растворов от состава (x) систем La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>. Расчет не проводился для системы с церием ввиду малохарактерного для него трехзарядного состояния. В случае с тербием энергия смешения выпадает из закономерности изменения энергий смешения в зависимости от номера РЗЭ и она была принята равной половине суммы энергий смешения систем с гадолинием и диспрозием.

По графическим зависимостям (рис. 2–5) можно определить предел замещения по заданной температуре или температуру распада по заданному пределу замещения в интервале составов x = 0,005-0,99.



**Рис. 2.** Зависимости температур распада твердых растворов от состава систем  $La_{1-x}Ln_xPO_4$ , где Ln = Eu - Dy для 0.05 < x < 0.95



**Рис. 3.** Зависимости температур распада твердых растворов от состава систем  $La_{1-x}Ln_xPO_4$ , где Ln = Pr - Sm для 0.05 < x < 0.95



**Рис. 4.** Зависимость температур распада твердых растворов от состава систем  $La_{1-x}Ln_xPO_4$ , где Ln = Eu - Dy для 0.005 < x < 0.05

|       | РЗЭ  |      |     |     |     |     |     |    |
|-------|------|------|-----|-----|-----|-----|-----|----|
| x     | Dy   | Tb   | Gd  | Eu  | Sm  | Pm  | Nd  | Pr |
| 0,005 | 494  | 402  | 310 | 219 | 170 | 109 | 56  | 27 |
| 0,01  | 563  | 458  | 354 | 250 | 194 | 125 | 64  | 30 |
| 0,015 | 612  | 498  | 385 | 271 | 210 | 136 | 69  | 33 |
| 0,02  | 651  | 530  | 409 | 289 | 224 | 144 | 74  | 35 |
| 0,025 | 684  | 557  | 430 | 303 | 235 | 152 | 77  | 37 |
| 0,03  | 714  | 581  | 449 | 316 | 245 | 158 | 81  | 39 |
| 0,035 | 740  | 603  | 465 | 328 | 254 | 164 | 84  | 40 |
| 0,04  | 764  | 622  | 480 | 339 | 263 | 169 | 86  | 41 |
| 0,045 | 786  | 640  | 494 | 349 | 270 | 174 | 89  | 43 |
| 0,05  | 807  | 657  | 507 | 358 | 277 | 179 | 91  | 44 |
| 0,10  | 961  | 782  | 604 | 426 | 330 | 213 | 109 | 52 |
| 0,15  | 1065 | 867  | 670 | 472 | 366 | 236 | 120 | 58 |
| 0,20  | 1142 | 930  | 718 | 506 | 393 | 253 | 129 | 62 |
| 0,25  | 1201 | 978  | 755 | 532 | 413 | 266 | 136 | 65 |
| 0,30  | 1246 | 1015 | 783 | 552 | 428 | 276 | 141 | 68 |
| 0,35  | 1279 | 1041 | 804 | 567 | 440 | 284 | 145 | 69 |
| 0,40  | 1302 | 1060 | 819 | 577 | 448 | 289 | 147 | 71 |
| 0,45  | 1315 | 1071 | 827 | 583 | 452 | 292 | 149 | 71 |
| 0,50  | 1320 | 1071 | 830 | 590 | 452 | 292 | 150 | 71 |
| 0,55  | 1315 | 1071 | 827 | 583 | 452 | 292 | 149 | 71 |
| 0,60  | 1302 | 1060 | 819 | 577 | 448 | 289 | 147 | 71 |
| 0,65  | 1279 | 1041 | 804 | 567 | 440 | 284 | 145 | 69 |
| 0,70  | 1246 | 1015 | 783 | 552 | 428 | 276 | 141 | 68 |
| 0,75  | 1201 | 978  | 755 | 532 | 413 | 266 | 136 | 65 |
| 0,80  | 1142 | 930  | 718 | 506 | 393 | 253 | 129 | 62 |
| 0,85  | 1065 | 867  | 670 | 472 | 366 | 236 | 120 | 58 |
| 0,90  | 961  | 782  | 604 | 426 | 330 | 213 | 109 | 52 |
| 0,95  | 807  | 657  | 507 | 358 | 277 | 179 | 91  | 44 |
| 0,96  | 764  | 622  | 480 | 339 | 263 | 169 | 86  | 41 |
| 0,97  | 714  | 581  | 449 | 316 | 245 | 158 | 81  | 39 |
| 0,98  | 651  | 530  | 409 | 289 | 224 | 144 | 74  | 35 |
| 0,99  | 563  | 458  | 354 | 250 | 194 | 125 | 64  | 30 |

**Таблица 2.** Температуры распада твердых растворов (К) состава La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, где Ln = Pr–Dy, использованные для построения рис. 2–5



**Рис. 5.** Зависимость температур распада твердых растворов от состава систем  $La_{1-x}Ln_xPO_4$ , где Ln = Pr - Sm для 0,005 < x < 0,05

Полученные графические зависимости (рис. 2–5) могут быть использованы при разработке новых люминесцентных и других практически важных материалов на основе твердых растворов ортофосфатов РЗЭ [19– 21].

#### Заключение

Предложенные графические зависимости позволяют определять пределы замещений в системах  $La_{1-x}Ln_xPO_4$ , где Ln = Pr-Dy, только по заданным температурам распада растворов, либо определять температуры распада (стабильности) твердых растворов только по заданным пределам замещений, без использования каких-либо других параметров. Они

могут быть полезны как специалистам, работающим в области иммобилизации радиоактивных отходов для определения максимального количества входящего в структуру поглотителя радиоактивного вещества, так и в области создания новых люминесцентных, лазерных и других материалов, содержащих небольшие количества активаторов. В первом случае могут быть использованы графические зависимости, приведенные на рис. 2–3 с интервалом составов 0,05 < x < 0,95, во втором – на рис. 4–5 с интервалом составов 0,005 < x < 0,05.

#### Список литературы

1. Grechanovsky A. E., Eremin N. N., Urusov V. S. Radiation resistance of LaPO<sub>4</sub> (monazite structure) and YbPO<sub>4</sub> (zircon structure) from data of computer simulation. *Physics of the Solid State*. 2013. Vol. 55, N 9. P. 1929–1935. DOI: 10.1134/S1063783413090138

2. Boatner L. A. Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime. *Rev. Mineral. Geochem.* 2002. Vol. 48, N 1. P. 87–121. DOI: 10.2138/rmg.2002.48.4

3. Monazite as a suitable actinide waste form / Schlenz H., Heuser J., Neumann A., et al. *Z. Kristallogr*. 2013. Vol. 228, N 3. P. 113–123. DOI: 10.1524/zkri.2013.1597

4. Ion-beam-induced amorphization of LaPO<sub>4</sub> and ScPO<sub>4</sub> / Meldrum A., Boatner L. A., Wang L. M., et al. *Nucl. Instr. and Meth. in Phys. Res. B.* 1997. Vol. 127–128. P. 160–165. DOI: 10.1016/S0168-583X(96)00873-7

5. Meldrum A., Boatner L. A., Ewing R. C. A comparison of radiation effects in crystalline ABO<sub>4</sub>-type phosphates and silicates. *Miner. Mag.* 2000. Vol. 64, N 2. P. 185–194. DOI: 10.1180/002646100549283

6. Recent progress in actinide phosphates chemistry / Popa K., Wallez G., Bregiroux D., et al. *Plutonium Futures – The Science 2016. A Topical conference on plutonium and actinides, supporting safeand secure plutonium research as part of the global energy mix, 18–22 August 2016, Baden-Baden, Germany.* 2016. P. 271–275.

7. Get'Man E. I., Radio S. V. Mixing Energies (Interaction Parameters) and Decomposition Temperatures in Solid Solutions of Monazites of Rare Earth Elements with Structure  $La_{1-x}Ln_xPO_4$ . *Inorg. Mater.* 2017. Vol. 53, N 7. P. 718–721. DOI: 10.1134/S0020168517070044

8. Becker R. Über den Aufbau binarer Legierungen (On the constitution of binary alloys). Z. Metallkunde. 1937. Vol. 29. P. 245–249. (in German) 9. Thermochemistry of  $La_{1-x}Ln_xPO_4$ -monazites (Ln = Gd, Eu) / Neumeier S., Kegler P., Arinicheva Yu., et al. *J. Chem. Thermodynamics.* 2017. Vol. 105. P. 396–403. DOI: 10.1016/j.jct.2016.11.003

10. Urusov V. S. Energetic theory of miscibility gaps in mineral solid solutions. *Fortschr. Mineral.* 1975. Vol. 52. P. 141–150.

11. Урусов В. С. Теория изоморфной смесимости. М: Наука, 1977. 251 с.

12. Урусов В. С., Еремин Н. Н. Кристаллохимия. Краткий курс. Часть 2. Учебное пособие. М.: Изд-во Московского университета, 2005. 125 с.

13. Ni Y., Hughes J. M.; Mariano A.N. Crystal chemistry of the monazite and xenotime structures. *Amer. Mineralogist.* 1995. Vol. 80, N 1–2. P. 21–26. DOI: 10.2138/am-1995-1-203

14. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst. Sect. A.* 1976. V. A32. P. 751–767. DOI: 10.1107/S0567739476001551

15. Hoppe R. Madelung Constants as a new Guide to the Structural Chemistry of Solids. *Adv. Fluor. Chem.* 1970. Vol. 6. P. 387–438.

16. Бацанов С. С. Концепция электроотрицательности; итоги и перспективы. *Успехи химии*. 1968. Т. 37, № 5. С. 778–815.

17. Xue D., Zuo S., Ratajczak H. Electronegativity and structural characteristics of lanthanides. *Physica B*. 2004. Vol. 352, N 1–4. P. 99–104. DOI: 10.1016/j.physb.2004.06.060

18. Бацанов С. С. Структурная химия. Факты и зависимости. М: Диалог-МГУ, 2000. 292 с.

19. Infrared-to-visible energy upconversion luminescence in orthophosphate NdPO<sub>4</sub> irradiated with cw 800 nm light / Nicácio D. L., Gouveia E. A., de Araujo M. T., et al. *Annals of Optics (XXVI Encontro Nacional de Física da Matéria Condensada)*. 2003. Vol. 5. P. 438–440.

20. Raman characterization and photoluminescence properties of  $La_{1-x}Tb_xPO_4 \cdot nH_2O$  and  $La_{1-x}Tb_xPO_4$  phosphor nanorods prepared by microwave-assisted hydrothermal synthesis / Colomer M.T., Bartolomé J., Ortiz A.L., et al. *Ceram. Int.* 2017. Vol. 43, N 14. P. 10840–10847. DOI: 10.1016/j.ceramint.2017.05.110

21. Solvothermal synthesis and luminescent properties of monodisperse LaPO<sub>4</sub>:Ln (Ln = Eu<sup>3+</sup>, Ce<sup>3+</sup>, Tb<sup>3+</sup>) particles / Yang P., Quan Z., Li C., et al. *J. Solid State Chem.* 2009. Vol. 182, N 5. P. 1045–1054. DOI: 10.1016/j.jssc.2009.01.024

Рукопис надійшов до редакції 18.06.2017

Є. І. Гетьман, Л. Б. Ігнатова, С. В. Радіо

Раніше авторами було запропоновано (Get'man, E. I.; Radio, S. V. *Inorg. Mater.* 2017, DOI: 10.1134/S0020168517070044) спосіб оперативного визначення рівноважних границь розчинності за заданих

УДК 54-165; 548.32; 546(185+650)

До питання розрахунку границь заміщень у твердих розчинах монацитів рідкісноземельних елементів складу La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, де Ln = Pr – Dy

температур або температури розпаду для заданих складів із діаграм термодинамічної стабільності (залежності температур розпаду  $La_{1-x}Ln_xPO_4$  від номеру рідкісноземельного елементу (РЗЕ)). Проте для проміжних складів (за значень x, що відрізняються від 0,02; 0,05; 0,1; 0,2; 0,5) було дано тільки їх приблизну оцінку, оскільки вона проводилась шляхом інтерполяції в областях нелінійної залежності температури розпаду твердого розчину від складу. В даній роботі ми пропонуємо визначати границі розчинності РЗЕ в  $La_{1-x}Ln_xPO_4$  тільки за температурою розпаду або температури розпаду тільки за границею розчинності без використання будь-яких інших додаткових даних із графічних взаємозалежностей, що описуються рівнянням Р. Беккера. У роботі проведено аналіз значень параметрів взаємодії (Q, кДж/моль) для систем  $La_{1-x}E0_4$  та  $La_{1-x}Gd_xPO_4$ , що отримані різними авторами за період 2007–2017 pp різними методами (*Ab initio*, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; *Ab initio*/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).

На підставі використання кристалохімічного методу визначення енергії змішування твердих розчинів В. С. Урусова і рівняння для регулярних розчинів Р. Беккера представлено графіки для зручного визначення меж заміщень у твердих розчинах зі структурою монациту La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, де Ln – рідкісноземельні елементи ряду Pr - Dy. Запропоновані графічні залежності дозволяють визначати межі зміщений за заданими температурами розпаду твердих розчинів або визначати температури розпаду (стабільності) твердих розчинів за заданими межами заміщень без використання будь-яких інших параметрів. Графічні залежності можуть бути корисні як фахівцям, що працюють в області іммобілізації радіоактивних відходів для визначення максимальної кількості поглинача радіоактивної речовини, який входить до структури, так і в області створення нових люмінесцентних, лазерних та інших матеріалів, що містять невелику кількість активатора.

Ключові слова: структура монациту, тверді розчини, фосфати, рідкісноземельні елементи.

# The question of calculating the substitution limits in solid solutions of monazites of rare-earth elements with structure $La_{1-x}Ln_xPO_4$ , where Ln = Pr - Dy

E. I. Get'man, L. B. Ignatova, S. V. Radio

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine

Earlier, the authors proposed (Get'man, E. I.; Radio, S. V. *Inorg. Mater.* 2017, DOI: 10.1134/S0020168517070044) to quickly determine equilibrium solubility limits at given temperatures or measure decay temperatures for specified compositions based on the diagrams of thermodynamic stability (dependences of  $La_{1-x}Ln_xPO_4$  decay temperatures from rare-earth elements number). However, in case of intermediate compositions (at *x* other than 0.02, 0.05, 0.1, 0.2, 0.5), we could find only approximate values, since the measurements were carried out by interpolation in the regions of nonlinear dependence of solid solution temperature from its composition. In the paper, we propose to determine the solubility limits of REE in  $La_{1-x}Ln_xPO_4$  only based on the decomposition temperature or measure the decomposition temperature only based on solubility limits without using any other additional data from the graphical interdependencies described by the R. Becker equation. We also analyzed the values of interaction parameters (*Q*, kJ/mol) in  $La_{1-x}Eu_xPO_4$  and  $La_{1-x}Gd_xPO_4$  systems, obtained using different methods by different authors during the period of 2007–2017 (*Ab initio*, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; *Ab initio*/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).

V. S. Urusov crystallochemical method for determining solid solution mixing energy and R. Becker equation for regular solutions were used to represent the graphs for quick determination of substitution limits in solid solutions of  $La_{1-x}Ln_xPO_4$  with monazite structure, where Ln represents rare-earth elements in Pr - Dy series. The proposed graph dependencies make it possible to determine substitution limits for orthophosphates  $La_{1-x}Ln_xPO_4$  with monazite structure (Ln = Pr - Dy; 0.005 < x < 0.99) based on the specified decomposition temperatures of solid solutions or determine the decomposition (stability) temperatures of solid solutions based on the specified substitution limits without any other parameters using. Graph dependencies can be useful both for specialists working in the field of immobilization of radioactive waste to determine the maximum amount of radioactive material absorber contained in the structure, as well as in the field of creating new luminescent, laser and other materials containing a small amount of activator.

Keywords: monazite structure, solid solutions, phosphates, rare-earth elements.

#### References

1. Grechanovsky, A. E.; Eremin, N. N.; Urusov, V. S. Radiation resistance of LaPO<sub>4</sub> (monazite structure) and YbPO<sub>4</sub> (zircon structure) from data of computer simulation. *Physics of the Solid State*. **2013**, *55* (9), 1929–1935 DOI: 10.1134/s1063783413090138.

2. Boatner, L. A. Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime. *Reviews in Mineralogy and Geochemistry*. **2002**, *48* (1), 87–121 DOI: 10.2138/rmg.2002.48.4.

3. Schlenz, H.; Heuser, J.; Neumann, A.; Schmitz, S.; Bosbach, D. Monazite as a suitable actinide waste form. *Zeitschrift für Kristallographie - Crystalline Materials*. **2013**, 228 (3), 113–123 DOI: 10.1524/zkri.2013.1597.

4. Meldrum, A.; Boatner, L.; Wang, L.; Ewing, R. Ion-beam-induced amorphization of LaPO<sub>4</sub> and ScPO<sub>4</sub>. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*. **1997**, *127–128*, 160–165 DOI: 10.1016/s0168-583x(96)00873-7.

5. Meldrum, A.; Boatner, L. A.; Ewing, R. C. A comparison of radiation effects in crystalline ABO<sub>4</sub>-type phosphates and silicates. *Mineralogical Magazine*. **2000**, *64* (2), 185–194 DOI: 10.1180/002646100549283.

Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

6. Popa, K.; Wallez, G.; Bregiroux, D.; Raison, P.; Martel, L.; Arinicheva, Y.; Neumeier, S.; Somers, J.; Konings, R. Recent progress in actinide phosphates chemistry. *Plutonium Futures – The Science 2016, A Topical Conference on Plutonium and Actinides, Supporting Safe and Secure Plutonium Research as Part of the Global Energy Mix, 18–22 August 2016, Baden-Baden, Germany.* **2016**, 271–275.

7. Get'Man, E. I.; Radio, S. V. Mixing energies (interaction parameters) and decomposition temperatures in solid solutions of monazites of rare earth elements with structure  $La_{1-x}Ln_xPO_4$ . *Inorganic Materials*. **2017**, *53* (7), 718–721 DOI: 10.1134/s0020168517070044.

8. Becker, R. Über den Aufbau binarer Legierungen (On the constitution of binary alloys), Zeitschrift für Metallkunde. 1937, 29, 245–249 (in German)

9. Neumeier, S.; Kegler, P.; Arinicheva, Y.; Shelyug, A.; Kowalski, P. M.; Schreinemachers, C.; Navrotsky, A.; Bosbach, D. Thermochemistry of  $La_{1-x}Ln_xPO_4$ -monazites (Ln = Gd, Eu). *The Journal of Chemical Thermodynamics*. **2017**, *105*, 396–403 DOI: 10.1016/j.jct.2016.11.003.

10. Urusov, V. S. Energetic theory of miscibility gaps in mineral solid solutions. *Fortschritte der Mineralogie*. **1975**, *52*, 141–150.

11. Urusov, V. S. *Teoriia izomorfnoi smesimosti* [The Theory of Isomorphous Miscibility]; Moscow: Nauka, 1977. (in Russian)

12. Urusov, V. S.; Eremin, N.N. *Kristallokhimiya. Kratkiy kurs. Chast' 2. Uchebnoye posobiye* [Crystal chemistry. Short course. Part 2. Textbook]; Moscow: Publishing house of Moscow University, 2005. (in Russian)

13. Ni, Y.; Hughes, J. M.; Mariano, A. N. Crystal chemistry of the monazite and xenotime structures. *American Mineralogist*. **1995**, *80* (1–2), 21–26 DOI: 10.2138/am-1995-1-203.

14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A*. **1976**, *32* (5), 751–767 DOI: 10.1107/s0567739476001551.

15. Hoppe, R. Madelung Constants as a new Guide to the Structural Chemistry of Solids. Advances in Fluorine Chemistry. **1970**, *6*, 387–438.

16. Batsanov, S. S. The Concept of Electronegativity. Conclusions and Prospects. *Russian Chemical Reviews*. **1968**, 37 (5), 332–351 DOI: 10.1070/rc1968v037n05abeh001639.

17. Xue, D.; Zuo, S.; Ratajczak, H. Electronegativity and structural characteristics of lanthanides. *Physica B: Con*densed Matter. **2004**, 352 (1–4), 99–104 DOI: 10.1016/j.physb.2004.06.060.

18. Batsanov, S. S. *Strukturnaya khimiya. Fakty i zavisimosti* [Structural chemistry. Facts and dependencies]; Moscow: Dialog-MSU, 2000. (in Russian)

19. Nicácio, D. L.; Gouveia, E. A.; de Araujo, M. T.; Guedes, I.; K-Loong, G.; Boatner, L. A. Infrared-to-visible energy upconversion luminescence in orthophosphate NdPO<sub>4</sub> irradiated with cw 800 nm light. *Annals of Optics (XXVI Encontro Nacional de Física da Matéria Condensada)*. 2003, *5*, 438–440.

20. Colomer, M.; Bartolomé, J.; Ortiz, A.; Andrés, A.D. Raman characterization and photoluminescence properties of  $La_{1-x}Tb_xPO_4 \cdot nH_2O$  and  $La_{1-x}Tb_xPO_4$  phosphor nanorods prepared by microwave-assisted hydrothermal synthesis. *Ceramics International.* **2017**, *43* (14), 10840–10847 DOI: 10.1016/j.ceramint.2017.05.110.

21. Yang, P.; Quan, Z.; Li, C.; Hou, Z.; Wang, W.; Lin, J. Solvothermal synthesis and luminescent properties of monodisperse LaPO<sub>4</sub>:Ln (Ln=Eu<sup>3+</sup>, Ce<sup>3+</sup>, Tb<sup>3+</sup>) particles. *Journal of Solid State Chemistry*. **2009**, *182* (5), 1045–1054 DOI: 10.1016/j.jssc.2009.01.024.

Взаимодействие в системе  $Ce^{3+} - WO_4^{2-} - H^+ - H_2O$  при различной кислотности / Г. М. Розанцев, А. Ю. Марийчак, Ю. А. Олексий, Ж. А. Румянцева, С. В. Радио // Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки. 2017. № 2. С. 41–49

УДК 546(786+655): 546.05: 543.421/.424

# ВЗАИМОДЕЙСТВИЕ В СИСТЕМЕ Се<sup>3+</sup> – WO4<sup>2–</sup> – H<sup>+</sup> – H<sub>2</sub>O ПРИ РАЗЛИЧНОЙ КИСЛОТНОСТИ

Г. М. Розанцев, А. Ю. Марийчак, Ю. А. Олексий, Ж. А. Румянцева, С. В. Радио \*

Донецкий национальный университет имени Васыля Стуса, химический факультет, г. Винница, Украина

Исследовано образование Ce(III)-содержащих изополивольфраматов в подкисленных до различной кислотности  $Z = v(H^+)/v(WO_4^{2-}) = 1,00-1,364$  растворов системы Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – CeCl<sub>3</sub> – H<sub>2</sub>O. Методами химического анализа, РФА и ИК-спектроскопии установлено, что из неподкисленного раствора  $Na_2WO_4$  (Z = 0,00) происходит осаждение ортовольфрамата церия  $Ce_2(WO_4)_3$ ·9H<sub>2</sub>O. Из свежеприготовленного раствора при Z = 1,00 синтезирован гептавольфрамат церия Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O, методом РФА показано, что его термическое разложение при 500 °C сопровождается кристаллизацией фаз Ce4W9O33 и WO3. Методами химического анализа и ИК-спектроскопии установлено, что из свежеприготовленного раствора при Z = 1,17 происходит осаждение Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O. Методом РФА показано, что при термолизе Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O при 500 °C уже происходит разложение аниона, но кристаллизуется только WO<sub>3</sub> и образуется аморфная фаза, которая при 700 °C разлагается с кристаллизацией Се<sub>4</sub>W<sub>9</sub>O<sub>33</sub> и WO<sub>3</sub>. Методами химического анализа и ИК-спектроскопии установлено, что из выдержанных подкисленными при Z = 1,17 и 1,29 растворов Na<sub>2</sub>WO<sub>4</sub> синтезированы соли церия(III) с анионом паравольфрамата Б - Ce<sub>10</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>3</sub>·94H<sub>2</sub>O (Z = 1,17) и Na<sub>10</sub>Ce<sub>20</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>7</sub>·180H<sub>2</sub>O (Z = 1,29). Методами химического ана-ИК-спектроскопии установлено, раствора при Z = 1,364лиза и что ИЗ осаждается Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·35H<sub>2</sub>O, в котором два лакунарных производных метавольфрамат-аниона, соединенные двумя общими µ2-О вершинами, дополнительно стабилизируются двумя Се-атомами. Ключевые слова: изополивольфрамат, церий(III), ИК-спектроскопия, синтез.

#### Введение

Среди соединений церия с полиоксовольфрамат-анионами в их составе преимущественно изучены соли, в которых лакунарные производные гетерополианионов со структурой Кеггина либо Уэллса–Доусона координированы к иону Се(III) либо к Се(IV) [1–4]. Также выделены и структурно охарактеризованы соли с гетерополианионом со структурой Пикока–Уикли, в котором лакунарные производные изополианиона со структурой Линдквиста координированы к Се(III) либо Се(IV) гетероатому с образованием квадратной антипризмы из атомов кислорода [1, 5–6].

В то же время, взаимодействие ионов Ce(III) с подкисленными водными растворами ортовольфрамат-аниона было объектом изучения только в [7–8].

В [7] исследовано взаимодействие раствора  $CeCl_3$  с раствором  $Na_2WO_4$  при pH = 2,2. Было показано, что после отделения желтого осадка неустановленного состава в

оставленном фильтрате наблюдалось образование желтых кристаллов Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·44H<sub>2</sub>O, строение которых установлено методом PCA. В [7] отмечается, что координационное число Ce(III) в данном соединении равно 9, а структура построена из изополианионов  $[H_2W_{22}O_{74}]^{14-}$ , к которым координированы два катиона {Ce(H<sub>2</sub>O)<sub>5</sub>}<sup>3+</sup>.

В [8] изучено взаимодействие Ce(NO<sub>3</sub>)<sub>3</sub> с различными солями натрия  $(Na_2WO_4,$ Na10W12O41 и Na6W12O39) методами pH-метрии и кондуктометрического титрования при различных значениях рН в водной и спиртовой средах. Электрометрические эксперименты позволили зафиксировать образование среднего вольфрамата церия Ce<sub>2</sub>O<sub>3</sub>·3WO<sub>3</sub> и паравольфрамата церия  $5Ce_2O_3 \cdot 36WO_3$ вблизи pH = 6,2 и 5,3. При этом данные о гидратном составе выделенных солей и резуль-

<sup>\*</sup> E-mail: radio@donnu.edu.ua

<sup>©</sup> Г. М. Розанцев, А. Ю. Марийчак, Ю. А. Олексий, Ж. А. Румянцева, С. В. Радио, 2017

таты спектроскопических исследований, которые бы позволили определить тип аниона, не приведены.

Ранее [9] из водного и водно-ацетонового растворов при Z = 0.80 были синтезированы Na<sub>6</sub>H<sub>2</sub>[Ce(W<sub>5</sub>O<sub>18</sub>)<sub>2</sub>]·30H<sub>2</sub>O и Na<sub>9</sub>[Ce(W<sub>5</sub>O<sub>18</sub>)<sub>2</sub>]·28H<sub>2</sub>O с гетерополианионом со структурой Пикока-Уикли и ионами Ce(IV) и Ce(III). В данной работе продолжены исследования по разработке условий синтеза Се(III)-содержащих изополивольфраматов ИЗ растворов  $Ce^{3+} - WO_4^{2-} - H^+ - H_2O$  при различной кислотности  $Z = v(H^+)/v(WO_4^{2-}) = 1,00-1,364.$ Установлено, что для синтеза гептавольфраматов (Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O, Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O) необходимо использовать свежеподкисленные до Z = 1,00-1,17 растворы вольфрамата натрия; для синтеза солей церия(III) с анионом паравольфрамата Б раствор вольфрамата натрия предварительно должен быть выдержан подкисленным до Z = 1,17-1,29; для синтеза соли с лакунарным метавольфрамат-анионом, Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·35H<sub>2</sub>O, раствор вольфрамата натрия должен быть подкислен до Z = 1,364. Состав полученных солей охарактеризован методами химического анализа, ИК-спектроскопии и рентгенофазового анализа.

#### Экспериментальная часть

Характеристика и стандартизация исходных веществ. При проведении исследований были использованы водные растворы Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O «ч. д. а.», HNO<sub>3</sub> «Х. Ч.», CeCl<sub>3</sub>·7H<sub>2</sub>O «ч.». Установление точных концентраций растворов исходных веществ проводили по стандартным методикам: Na<sub>2</sub>WO<sub>4</sub> - гравиметрически, гравиметрическая форма WO<sub>3</sub> ( $\delta = 0.5$  %) [10]; HNO<sub>3</sub> – титрованием точной навески Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O (индикатор метиловый красный) ( $\delta = 0.5$  %) [11]; CeCl<sub>3</sub> – прямым комплексонометрическим титрованием ( $\delta = 0.8$  %) (ацетатный буферный раствор с рН 6,0; индикатор ксиленоловый оранжевый) [12]. Для приготовления ацетатного буферного раствора c  $pH \approx 6$ навеску СН<sub>3</sub>СООNа («ч. д. а.») (236,5 г) растворяли в дистиллированной воде, добавляли 1 фиксанал СН<sub>3</sub>СООН и доводили дистиллированной водой до общего объема 1 л).

Методика синтеза. Для синтеза солей полуторакратный мольный избыток (в пересчете на теоретически ожидаемый изополивольфрамат-анион (ИПВА)) раствора CeCl<sub>3</sub> прибавляли при интенсивном перемешивании к растворам Na<sub>2</sub>WO<sub>4</sub> ( $C_W = 0,1$  моль/л), подкисленным до  $Z = v(H^+) / v(WO_4^{2-}) = 0.00;$ 1,00; 1,17; 1,29; 1,364. Данные значения Z соответствуют существованию ортовольфрамат-аниона (WO<sub>4</sub><sup>2-</sup>, Z = 0,00) и образованию паравольфрамат-анионов  $([W_6O_{20}(OH)_2]^{6-},$  $Z = 1,00; H_x[W_{12}O_{40}(OH)_2]^{(10-x)-}, Z = 1,17-1,42;$  $[HW_7O_{24}]^{5-}$ , Z = 1,29) и ундекавольфраматаниона ( $[Ce_2(H_2O)_{10}W_{22}O_{72}(OH)_2]^{8-}, Z = 1,364$ ) в соответствии с уравнениями 1-2 [13-15]:

$$n \operatorname{WO}_{4^{2-}} + m \operatorname{H}^{+} \leftrightarrows$$
$$\leftrightarrows [\operatorname{H}_{m-2k} \operatorname{W}_{n} \operatorname{O}_{4n-k}]^{(2n-m)-} + k \operatorname{H}_{2} \operatorname{O},$$
(1)

$$2 \operatorname{Ce}^{3+} + 22 \operatorname{WO}_{4}^{2-} + 30 \operatorname{H}^{+} \leftrightarrows$$
$$\leftrightarrows [\operatorname{Ce}_{2}(\operatorname{H}_{2}\operatorname{O})_{10} \operatorname{W}_{22}\operatorname{O}_{72}(\operatorname{OH})_{2}]^{8-} + 4 \operatorname{H}_{2}\operatorname{O} \qquad (2)$$

Осадки получали из двух типов растворов: 1) из свежеподкисленного раствора: к подкисленному до необходимой кислотности Z раствору вольфрамата натрия сразу же прибавляли раствор CeCl<sub>3</sub>; 2) из выдержанных подкисленными растворов: подкисленный раствор Na<sub>2</sub>WO<sub>4</sub> оставляли на 2 месяца для достижения равновесия между отдельными ИПВА и после этого прибавляли раствор CeCl<sub>3</sub>. Прибавление хлорида церия(III) проводили при интенсивном перемешивании, а образующиеся осадки перемешивали в течение 4 часов и оставляли при 6 °С на 3 суток. После этого отделяли осадок от маточного раствора фильтрованием через обеззоленный фильтр «синяя лента», промывали холодной дистиллированной водой, высушивали на воздухе до постоянной массы и подвергали химическому анализу.

Методика химического анализа. Точные навески (по ~0,2000 г) воздушно-сухих образцов кипятили в смеси концентрированных HCl и HNO<sub>3</sub> (15 и 5 мл соответственно) для перевода вольфрама в нерастворимый гидратированный триоксид WO<sub>3</sub>·(1-2)H<sub>2</sub>O и частичного отделения его от катионов Ce<sup>3+</sup>  $(Ce^{4+})$ . Для полного отделения  $Ce^{3+}$   $(Ce^{4+})$  к мокрому осадку после упаривания добавляли

10 мл HNO<sub>3</sub> (*w* = 63 %) и выпаривали на водяной бане практически досуха. Затем приливали 70 мл дистиллированной воды и упаривали на водяной бане до 40 мл. После этого осадок WO3·H2O отфильтровывали через обеззоленный фильтр «синяя лента», промывали 3 %-м раствором HNO<sub>3</sub>, высушивали и прокаливали при 800 °С до гравиметрической формы WO<sub>3</sub> ( $\delta = 0.5$  %) [10]. В фильтрате, который оставался после отделения WO<sub>3</sub>·(1-2)H<sub>2</sub>O, определяли содержание Ce<sup>3+</sup> прямым комплексонометрическим титрованием [12]. Для этого фильтрат упаривали практически досуха, прибавляли 20 мл дистиллированной воды, приливали 30 мл ацетатного буферного раствора (рН 6) и проводили титрование раствором трилона Б. Точку эквивалентности визуально фиксировали по изменению окраски индикатора ксиленолового оранжевого с розовой на желтую.

Параллельно методом атомно-абсорбционной спектроскопии устанавливали содержание Na<sup>+</sup> ( $\delta = 1,0$  %) в фильтрате (AAC «Сатурн-3»; пламя ацетилен–воздух; аналитическая линия 589,6 нм; источник резонансного излучения – высокочастотная безэлектродная лампа ВСБ–2; I = 70 мА).

Содержание воды в солях определяли прокаливанием точных навесок воздушно-сухих образцов при 500 °C ( $\delta = 0.5$  %). ИК-спектроскопический анализ. Для идентификации анионов в составе синтезированных солей использован ИК-спектроскопический анализ (FTIR Spectrum BXII, Perkin-Elmer). ИК-спектры записывали в области волновых чисел 400–4000 см<sup>-1</sup>. Для этого навеску соли 0,0030 г перетирали с 0,6000 г КВг («ос. ч.») и спрессовывали в тонкие диски.

Рентгенофазовый анализ (РФА) полученных солей методом порошка проводили на рентгендифрактометре «ДРОН–3» (СиКа-излучение, Ni-фильтр). Рентгенограммы записывали в областях брегговских углов  $3^{\circ} < \theta < 30^{\circ}$ .

## Результаты и их обсуждение

1. Раствор  $CeCl_3 - Na_2WO_4 - H_2O$  при Z = 0,00. Из неподкисленного (Z = 0,00) раствора Na<sub>2</sub>WO<sub>4</sub> был выделен ортовольфрамат церия Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O, результаты химического анализа которого приведены в табл. 1.

ИК-спектр  $Ce_2(WO_4)_3 \cdot 9H_2O$  (рис. 1) свидетельствует о том, что окружение атомов вольфрама атомами кислорода в анионе соли не является тетраэдрическим (T<sub>d</sub>), а в блочном строении соли приближается либо к октаэдрическому (O<sub>h</sub>), либо к искаженному октаэдрическому (P<sub>4h</sub>, C<sub>4v</sub> и даже C<sub>2v</sub>).

Таблица 1. Результаты химического и ИК-спектроскопического анализа солей, выделенных при Z = 0,00 и 1,00–1,17

| Результаты химического анализа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | <i>w</i> , %            |                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|---------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | WO <sub>3</sub>         | H <sub>2</sub> O          |  |  |
| Найдено для соли, выделенной при Z = 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27,01        | 58,10                   | 13,32                     |  |  |
| Вычислено для Ce <sub>2</sub> (WO <sub>4</sub> ) <sub>3</sub> ·9H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27,68        | 58,65                   | 13,67                     |  |  |
| ИК, см <sup>-1</sup> : 605с, 717ср 829с ( $\nu$ (O–W–O)); 918ср ( $\nu$ (W=O)); 1630с ( $\delta$ (H <sub>2</sub> O)); 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3402с ш (v(Н | 2 <b>O</b> ))           |                           |  |  |
| Найдено для соли, выделенной при Z = 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13,83        | 69,74                   | 15,32                     |  |  |
| Вычислено для Ce <sub>2</sub> W <sub>7</sub> O <sub>24</sub> ·20H <sub>2</sub> O, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,20        | 70,21                   | 15,59                     |  |  |
| ИК, см <sup>-1</sup> : 411сл, 418пл (б(О–W–О)); 605ср, 753ср 849с (v(О–W–О)); 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6c (v(W=O))  | ; 1625c (d(H            | <sub>2</sub> O)); 3396c   |  |  |
| $(v(H_2O))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         |                           |  |  |
| Найдено для соли, выделенной при Z = 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,10        | 72,29                   | 15,21                     |  |  |
| Вычислено для Ce <sub>5</sub> [HW <sub>7</sub> O <sub>24</sub> ] <sub>3</sub> ·56H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12,20        | 72,40                   | 15,40                     |  |  |
| ИК, см <sup>-1</sup> : 409сл, 417пл (б(О–W–О)); 618ср, 756ср 841с (v(О–W–О)); 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8c (v(W=O))  | ; 1626c ( $\delta(H$    | <sub>2</sub> O)); 3397c   |  |  |
| $(v(H_2O))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         |                           |  |  |
| Найдено для соли, выделенной при Z = 1,17 из раствора, выдержанного                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                         |                           |  |  |
| подкисленным в течение двух месяцев                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,06        | 70,48                   | 14,93                     |  |  |
| Вычислено для Ce <sub>10</sub> [W <sub>12</sub> O <sub>40</sub> (OH) <sub>2</sub> ] <sub>3</sub> ·94H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13,99        | 71,12                   | 14,89                     |  |  |
| ИК, см <sup>-1</sup> : 418сл, 444пл (б(О–W–О)); 502сл, 618ср, 706с, 837с (v(О–W–О)); 502сл, 618ср, 706с, 837с (v(O–W–O)); 502сл, 706с, 837с (v(O–W–O)); 502сл, 706с, 837с (v(O–W–O)); 502сл, 706с, 837с (v(O–W–O)); 50200, 706с, 8020, 700); 50200, 700); 50200, 7000, 7000, 700); 50200, 7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000); 50200, 7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000, | 939c (v(W=O  | )); $1622c (\delta(H))$ | I <sub>2</sub> O)); 3366c |  |  |
| $(v(H_2O))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         |                           |  |  |

Идентификация продуктов термолиза Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O методом РФА показала, что прокаленный при 500 °C продукт представляет собой индивидуальную фазу Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> (JCPDS № 31–340), что косвенно подтверждает индивидуальность полученного соединения и отсутствие примесей.

2. Раствор CeCl<sub>3</sub> – Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – H<sub>2</sub>O при Z = 1,00. Из подкисленного до Z = 1,00раствора Na<sub>2</sub>WO<sub>4</sub> был выделен рентгенаморфный осадок желтого цвета, результаты химического анализа и описание ИК-спектра которого приведены в табл. 1.

ИК-спектр синтезированной соли по характеру колебаний в области каркаса W–O может соответствовать колебаниям в гепта-

вольфрамат-анионе [W<sub>7</sub>O<sub>24</sub>]<sup>6-</sup>. По результатам химического и ИК-спектроскопического анализа выделенной соли приписан состав Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O. Изучение продуктов термолиза Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O методом РФА (рис. 2) показало, что прокаленный при 500 °C состав представляет собой смесь фаз Ce<sub>4</sub>W<sub>9</sub>O<sub>33</sub> (JCPDS № 25–0192) и WO<sub>3</sub> (JCPDS № 45– 1035).

Результат РФА позволяет предложить схему термолиза:

$$\begin{array}{c} \text{Ce}_2\text{W}_7\text{O}_{24}\text{:}20\text{H}_2\text{O} \xrightarrow{500\,^\circ\text{C}} \\ \xrightarrow{500\,^\circ\text{C}} 0.5\,\text{Ce}_4\text{W}_9\text{O}_{33} + 2.5\,\text{WO}_3 + 20\,\text{H}_2\text{O}. \end{array}$$



**Рис. 1.** ИК-спектр Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O



**Рис. 2.** Рентгенограммы: а) продуктов термолиза Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O (2 ч; 500 °C); б) WO<sub>3</sub> (JCPDS № 45–1035 [16]); в) Ce<sub>4</sub>W<sub>9</sub>O<sub>33</sub> (JCPDS № 25–0192 [16]

3. Раствор  $CeCl_3 - Na_2WO_4 - HNO_3 - H_2O$ при Z = 1,17. Из подкисленного до Z = 1,17раствора Na<sub>2</sub>WO<sub>4</sub> был выделен рентгенаморфный осадок желтого цвета, которому по результатам химического и ИК-спектроскопического анализа (табл. 1) соответствует формула Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O. ИК-спектр выделенной при Z = 1,17 фазы по характеру колебаний в области каркаса W–O является идентичным ИК-спектру Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O и соответствует колебаниям связей в гептавольфрамат-анионе.

Исследование продуктов термолиза Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O методом РФА показало,

что прокаливание при 500 °С сопровождается кристаллизацией только фазы WO<sub>3</sub> (JCPDS № 45–1035) (рис. 3а). Тогда как кристаллизации Се-содержащей фазы после прокаливания при данной температуре не наблюдается. Скорее всего, разложение при этой температуре приводит к образованию наряду с WO<sub>3</sub> рентгенаморфной фазы А.



**Рис. 3.** Рентгенограммы продуктов термолиза Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O: a) соль прокалена 2 ч при 500 °C; б) соль прокалена 2 ч при 700 °C; в) WO<sub>3</sub> (JCPDS № 45–1035 [16]); г) Ce<sub>4</sub>W<sub>9</sub>O<sub>33</sub> (JCPDS № 25–0192 [16])

Разложение последней сопровождается появлением Се–содержащей фазы Се<sub>4</sub>W<sub>9</sub>O<sub>33</sub> (JCPDS № 25–0192), которая фиксируется на рентгенограмме продуктов термолиза после прокаливания при 700 °С (рис. 36). Это позволяет предложить схему термолиза данной соли:

$$Ce_{5}[HW_{7}O_{24}]_{3} \cdot 56H_{2}O \xrightarrow{500 \,^{\circ}C} \xrightarrow{500 \,^{\circ}C} [WO_{3} + \phiasa A (аморфная)] \xrightarrow{700 \,^{\circ}C} \xrightarrow{700 \,^{\circ}C} 1,25 \, Ce_{4}W_{9}O_{33} + 9,75 \, WO_{3} + 57.5 \, H_{2}O$$

Данные РФА также подтверждают отсутствие натрия в составе выделенных солей, поскольку при его присутствии в продуктах термолиза будет присутствовать либо дивольфрамат натрия  $Na_2W_2O_7$ , либо тетравольфрамат натрия  $Na_2W_4O_{13}$ , как это наблюдалось в [17–18].

Если раствор  $Na_2WO_4$  подкислить до Z = 1,17, выдержать в течение 2 месяцев и после этого добавить раствор CeCl<sub>3</sub>, то также наблюдается образование желтого рентгенаморфного осадка, которому по результатам химического и ИК-спектроскопического анализа (табл. 1) соответствует формула паравольфрамата Б церия, Ce<sub>10</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>3</sub>·94H<sub>2</sub>O.

4. Раствор CeCl<sub>3</sub> – Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – H<sub>2</sub>O при Z = 1,29 и 1,364. Из подкисленного до Z = 1,29 раствора Na<sub>2</sub>WO<sub>4</sub> были выделены рентгенаморфные осадки желтого цвета, которым по результатам химического и ИКспектроскопического анализа (табл. 2) соответствуют формулы NaCe<sub>8</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>5</sub>·86H<sub>2</sub>O и Na<sub>10</sub>Ce<sub>20</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>7</sub>·180H<sub>2</sub>O.

Из подкисленного до Z = 1,364 раствора Na<sub>2</sub>WO<sub>4</sub> был выделен рентгенаморфный осадок желтого цвета, которому по результатам химического и ИК-спектроскопического анализа (табл. 2) соответствует формула Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>71</sub>(OH)<sub>2</sub>]·35H<sub>2</sub>O.

ИК-спектр выделенной при Z = 1,364 соли (рис. 4а) по характеру колебаний в области каркаса W–O соответствует колебаниям аниона [Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]<sup>8–</sup>, выделенного в [7] в составе кристаллической двойной соли (рис. 4б). Анион в Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·35H<sub>2</sub>O, по данным структурных исследований [7], построен из двух лакунарных производных метавольфрамат-аниона, соединенных двумя

общими вершинами и дополнительно стабилизированными двумя  $\{Ce(H_2O)_5\}^{3+}$  фрагментами.

**Таблица 2.** Результаты химического и ИК-спектроскопического анализа солей, выделенных при *Z* = 1,29 и 1,364

| D                                                                                                                                                                      | w, %              |                                |                             |                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|-----------------------------|----------------------|--|--|
| Результаты химического анализа                                                                                                                                         | Na <sub>2</sub> O | Ce <sub>2</sub> O <sub>3</sub> | WO <sub>3</sub>             | H <sub>2</sub> O     |  |  |
| Найдено для соли, выделенной при $Z = 1,29$ (свежеподкис-                                                                                                              |                   |                                |                             |                      |  |  |
| ленный раствор)                                                                                                                                                        | 0,20              | 11,74                          | 73,21                       | 14,32                |  |  |
| Вычислено для NaCe8[HW7O24]5·86H2O                                                                                                                                     | 0,28              | 11,88                          | 73,42                       | 14,43                |  |  |
| ИК, см <sup>-1</sup> : 407сл, 422сл (б(О–W–О)); 513сл, 590пл 716пл                                                                                                     | 835с 876пл        | (v(O-W-O))                     | ; 939c (v(W                 | =O)); 1627c          |  |  |
| $(\delta(H_2O)); 3402c \amalg (v(H_2O))$                                                                                                                               |                   |                                |                             |                      |  |  |
| Найдено для соли, выделенной при Z = 1,29 из раствора,                                                                                                                 | 1,28              | 12,91                          | 73,10                       | 12,89                |  |  |
| выдержанного подкисленным в течение двух месяцев                                                                                                                       |                   |                                |                             |                      |  |  |
| Вычислено для Na <sub>10</sub> Ce <sub>20</sub> [W <sub>12</sub> O <sub>40</sub> (OH) <sub>2</sub> ] <sub>7</sub> ·180H <sub>2</sub> O                                 | 1,17              | 12,42                          | 73,67                       | 12,74                |  |  |
| ИК, см <sup>-1</sup> : 411сл, 427сл (б(О–W–О)); 505сл, 614ср 710с 838с 8                                                                                               | 869пл (v(О–W      | V–O)); 939c (v                 | v(W=O)); 162                | $4c (\delta(H_2O));$ |  |  |
| 3390с ш (v(H <sub>2</sub> O))                                                                                                                                          |                   |                                |                             |                      |  |  |
| Найдено для соли, выделенной при Z = 1,364 (свежепод-                                                                                                                  | 0,75              | 10,04                          | 76,16                       | 12,85                |  |  |
| кисленный раствор)                                                                                                                                                     |                   |                                |                             |                      |  |  |
| Вычислено для Na <sub>2</sub> Ce <sub>2</sub> [Ce <sub>2</sub> (H <sub>2</sub> O) <sub>10</sub> W <sub>22</sub> O <sub>71</sub> (OH) <sub>2</sub> ]·35H <sub>2</sub> O | 0,93              | 9,88                           | 76,73                       | 12,47                |  |  |
| ИК, см <sup>-1</sup> : 419сл (б(О–W–О)); 517сл, 658пл 729с 827с 870с (v(                                                                                               | O-W-O)); 94       | 1c (v(W=O));                   | ; 1627c (δ(H <sub>2</sub> C | D)); 3425c ш         |  |  |
| $(v(H_2O))$                                                                                                                                                            |                   |                                |                             |                      |  |  |



**Рис. 4.** ИК-спектры: a) Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·35H<sub>2</sub>O (выделен при Z = 1,364); б) Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·44H<sub>2</sub>O [7]

## Заключение

Таким образом, установлена возможность синтеза ортовольфрамата церия  $Ce_2(WO_4)_3$ ·9H<sub>2</sub>O (Z = 0,00) и Ce(III)-содержащих изополивольфраматов —

(Z = 1,364) – из растворов CeCl<sub>3</sub> – Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – H<sub>2</sub>O при различной кислотности Z. Выделенные соли охарактеризованы методами химического анализа и ИК-спектроскопии. Методом РФА показано различие в температурном характере термолиза солей Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O и Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O.

## Благодарности

Работа выполнена в соответствии с программой фундаментальных исследований Министерства образования и науки Украины (проект № 0116U002521).

#### Список литературы

1. Reinoso S., San Felices L., Gutiérrez-Zorrilla J. M. Ceriopolyoxotungstates: from monomeric species to nanosized molecular assemblies. In: Cerium / Editors: A. Izyumov and G. Plaksin. Nova Science Publishers, Inc. 2013. P. 1–41.

2. Sadakane M., Ostuni A., Pope M. T. Formation of 1 : 1 and 2 : 2 complexes of Ce(III) with the heteropolytungstate anion  $\alpha_2$ -[P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>]<sup>10-</sup>, and their interaction with proline. The structure of [Ce<sub>2</sub>(P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>14-</sup>. *J. Chem. Soc. Dalton Trans.* 2002. P. 63–67. DOI: 10.1039/B105967J

3. Ostuni A., Pope M. T. A large heteropolytungstotetracerate(III) based on a new divacant lacunary derivative of the Wells-Dawson tungstophosphate anion. *Comptes Rendus de l'Académie Des Sciences. Serie IIC – Chimie.* 2000. Vol. 3, N 3. P. 199–204. DOI: 10.1016/S1387-1609(00)00133-X

4. Synthesis and anti-influenza virus activities of heteropoly compounds containing rare earth elements / Liu J., Wang E., Zhou Y., et al. *Yao Xue Xue Bao*. 1998. Vol. 33, N 7. P. 544–547.

5. Peacock R. D., Weakley T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. *J. Chem. Soc. Sect. A.* 1971. N 11. P. 1836–1839. DOI: 10.1039/J19710001836

6. Xue G., Vaissermann J., Gouzerh P. Cerium(III) Complexes with Lacunary Polyoxotungstates. Synthesis and Structural Characterization of a Novel Heteropolyoxotungstate Based on  $\alpha$ -[SbW<sub>9</sub>O<sub>33</sub>]<sup>9-</sup> Units. *J. Clust. Sci.* 2002. Vol. 13, N 3. P. 409–421. DOI: 10.1023/A:1020555116986

7. Ismail A. H., Dickman M. H., Kortz U. 22-Isopolytungstate Fragment  $[H_2W_{22}O_{74}]^{14-}$  Coordinated to Lanthanide Ions. *Inorg. Chem.* 2009. Vol. 48, N 4. P. 1559–1565. DOI: 10.1021/ic801946m

8. Electrometric investigations on the formation of cerium(III) tungstates as a function of pH / Prasad S., de Brito A. L. F., Muniz A. C. S., et al. *Eclet. Quím.* 2000. Vol. 25. P. 77–87. DOI: 10.1590/S0100-46702000000100007

9. Марийчак А. Ю., Розанцев Г. М., Радио С. В. Синтез, ИК–спектроскопический анализ и микроморфология поверхности Се(III) и Се(IV)-содержащих гетерополивольфраматов с анионом со структурой Пикока-Уикли. Вісник Одеського національного університету. Хімія. 2017. Т. 22, № 3(63). С. 42–52. DOI: 10.18524/2304-0947.2017.3(63).109388

10. Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1965. 975 с.

11. Коростелев П. П. Приготовление растворов для химико-аналитических работ. М.: Наука, 1964. 400 с.

12. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия, 1970. 360 с.

13. Cruywagen, J. J.; Izak, F. J. Van Der Merve. Tungsten (VI) equilibria: A Potentiometric and calorimetric investigation. *J. Chem. Soc. Dalton Trans.* 1987. N 7. P. 1701–1705. DOI: 10.1039/DT9870001701

14. Розанцев Г. М., Радио С. В., Белоусова Е. Е. Изменение состояния изополивольфрамат-анионов в водных растворах по мере достижения равновесия. *Вопр. химии и хим. технологии.* 2005. № 5. С. 32–36.

15. Equilibrium in the acidified aqueous solutions of tungstate-anion: synthesis of Co(II) isopoly tungstates. Crystal structure Co(II) paratungstate of В Co<sub>5</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]·37H<sub>2</sub>O Radio S. V., Kryuchkov M. A., Zavialova E. G., et al. J. Coord. Chem. 2010. Vol. 63, N 10. P. 1678-1689. DOI: 10.1080/00958972.2010.489947

16. X-Ray PDF JCPDS, Philadelphia 1964–1989.

17. Phase formation in the Ni<sup>2+</sup>–WO<sub>4</sub><sup>2-</sup> – H<sup>+</sup>– H<sub>2</sub>O system (Z = 1.00). Crystal structure and properties of sodium heteropolyhexatunsten nickelate(2+) Na<sub>4</sub>[Ni(OH)<sub>6</sub>W<sub>6</sub>O<sub>18</sub>]·16H<sub>2</sub>O / Rozantsev G. M., Radio S. V., Gumerova N. I., et al. *J. Struct. Chem.* 2009. Vol. 50, N 2. P. 296–305. DOI: 10.1007/s10947-009-0041-z

18. Марийчак А. Ю., Розанцев Г.М., Радио С. В. Синтез и исследование гетерополидекавольфрамосамаратов(III) с анионом со структурой Пикока–Уикли. *Вопр. химии и хим. технологии.* 2017. № 6(115). С. 23– 31.

Рукопис надійшов до редакції 05.11.2017

УДК 546(786+655): 546.05: 543.421/.424

Взаємодія в системі Ce<sup>3+</sup> – WO4<sup>2–</sup> – H<sup>+</sup> – H2O за різної кислотності

Г. М. Розанцев, О. Ю. Марійчак, Ю. А. Олексій, Ж. О. Румянцева, С. В. Радіо

Донецький національний університет імені Василя Стуса, хімічний факультет, Вінниця, Україна

Досліджено утворення Ce(III)-вмісних ізополівольфраматів у підкислених до різної кислотності  $Z = v(H^+)/v(WO_4^{2-}) = 1,00-1,364$  розчинах системи Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – CeCl<sub>3</sub> – H<sub>2</sub>O. Методами хімічного аналізу, IU-спектроскопії та рентгенофазового (РΦА) аналізу встановлено, що з непідкисленого розчину Na<sub>2</sub>WO<sub>4</sub> (Z = 0,00) відбувається осадження церію(III) ортовольфрамату Се<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O. Ідентифікація продуктів термолізу Се<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O методом РФА показала, що прожарений за 500 °С продукт являє собою індивідуальну фазу Се<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>. Методом ІЧ-спектроскопії показано, що оточення Вольфраму Оксигеном в аніоні солі Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O не є тетраедричним, а у блочній будові солі наближається до октаедричного або викривленого октаедричного. З розчину за Z = 1,00 синтезовано церію(III) гептавольфрамат Ce<sub>2</sub>W<sub>7</sub>O<sub>24</sub>·20H<sub>2</sub>O, методом PФA показано, що його термічний розклад (після прожарювання за 500 °C) супроводжується кристалізацією фаз  $Ce_4W_9O_{33}$  та WO<sub>3</sub>. Методами хімічного аналізу та IU-спектроскопії встановлено, що з розчину за Z = 1,17 відбувається осадження Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O. Методом РФА показано, що під час прожарювання Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O за 500 °С відбувається кристалізація тільки WO<sub>3</sub>, а прожарювання за 700 °С супроводжується кристалізацією фази Се<sub>4</sub>W<sub>9</sub>O<sub>33</sub>. Методами хімічного аналізу та ІЧ-спектроскопії встановлено, що з витриманих підкисленими за Z = 1,17 та 1,29 розчинів синтезовано солі церію(III) з аніоном паравольфрамату Б – Ce<sub>10</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>3</sub>·94H<sub>2</sub>O (Z = 1,17) та Na<sub>10</sub>Ce<sub>20</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>7</sub>·180H<sub>2</sub>O (Z = 1,29). Методами хімічного аналізу та IЧ-спектроскопії встановлено, що з розчину за Z = 1,364 осаджується ундекавольфрамоцерат Na<sub>2</sub>Ce<sub>2</sub>[Ce<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>W<sub>22</sub>O<sub>72</sub>(OH)<sub>2</sub>]·35H<sub>2</sub>O з лакунарними метавольфрамат-аніонами в якості лігандів, які з'єднані двома спільними µ2-О вершинами та додатково стабілізованими двома  ${Ce(H_2O)_5}^{3+}$  катіонами.

Ключові слова: ізополівольфрамат, Церій(III), ІЧ-спектроскопія, синтез.

## Interaction in the Ce<sup>3+</sup> – WO4<sup>2–</sup> – H<sup>+</sup> – H<sub>2</sub>O system at various acidity

G. M. Rozantsev, O. Yu. Mariichak, Yu. A. Oleksii, Zh. O. Rumiantseva, S. V. Radio

Vasyl' Stus Donetsk National University, Faculty of Chemistry, Vinnytsia, Ukraine

Formation of Ce(III)-containing isopoly tungstates in acidified to different acidity  $Z = v(H^+)/v(WO_4^{2-}) = 0.00$ , and 1.00–1.364 solutions of the Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – CeCl<sub>3</sub> – H<sub>2</sub>O system was studied.

Formation of cerium(III) orthotungstate  $Ce_2(WO_4)_3 \cdot 9H_2O$  from non-acidified solution of Na<sub>2</sub>WO<sub>4</sub> (Z = 0.00) was determined by the chemical analysis, XRD, and FTIR spectroscopy. Obtaining of an individual Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> phase after Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O calcination at 500 °C was confirmed by X-ray diffraction analysis. Absence of tetrahedral surrounding of tungsten atoms by oxygen atoms in  $Ce_2(WO_4)_3$ ·9H<sub>2</sub>O salt anion was established by the analysis of FTIR spectroscopy data. From the solution with Z = 1.00 the cerium heptatungstate  $Ce_2W_7O_{24} \cdot 20H_2O$  was synthesized. Presence of  $Ce_4W_9O_{33}$ and WO<sub>3</sub> phases in products of  $Ce_2W_7O_{24}$ ·20H<sub>2</sub>O thermal decomposition were identified by X-ray diffraction analysis. Conditions for  $Ce_{5}[HW_{7}O_{24}]_{3}$  · 56H<sub>2</sub>O synthesis from the Na<sub>2</sub>WO<sub>4</sub> – HNO<sub>3</sub> – CeCl<sub>3</sub> – H<sub>2</sub>O system with Z = 1.17 were elaborated. Presence of only WO<sub>3</sub> phase in products of Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O thermal decomposition at 500 °C was identified by X-ray diffraction analysis. Crystallization of Ce<sub>4</sub>W<sub>9</sub>O<sub>33</sub> phase in products of Ce<sub>5</sub>[HW<sub>7</sub>O<sub>24</sub>]<sub>3</sub>·56H<sub>2</sub>O thermal decomposition was observed after calcination at 700 °C. Conditions for the synthesis of Cerium(III) salts with paraanion,  $Ce_{10}[W_{12}O_{40}(OH)_2]_3 \cdot 94H_2O$ and Na<sub>10</sub>Ce<sub>20</sub>[W<sub>12</sub>O<sub>40</sub>(OH)<sub>2</sub>]<sub>7</sub>·180H<sub>2</sub>O, tungstate B from the  $Na_2WO_4 - HNO_3 - CeCl_3 - H_2O$  system with Z = 1.17, and 1.29 respectively were established. Presence of [W12O40(OH)2]10- anion was detected by FTIR spectroscopy. Procedure for the double sodium-cerium(III) salt  $Na_2Ce_2[Ce_2(H_2O)_{10}W_{22}O_{72}(OH)_2]$  · 35H<sub>2</sub>O synthesis from the solution with Z = 1.364 was elaborated. Presence of lacunary metatungstate anion in the salt composition was determined by FTIR spectroscopy. Two Cerium(III) cations in  $[Ce_2(H_2O)_{10}W_{22}O_{72}(OH)_2]^{8-}$  are coordinated to polyoxotungstate anion additionally stabilizing two Keggin-type lacunary metatungstate anions, connected by two  $\mu_2$ -O vertices.

Keywords: isopoly tungstate, Cerium (III), FTIR spectroscopy, synthesis.

References

1. Reinoso, S.; San Felices, L.; Gutiérrez-Zorrilla, J. M. Ceriopolyoxotungstates: from monomeric species to nanosized molecular assemblies. In: *Cerium: molecular structure, technological applications and health effects* / Editors: A. Izyumov and G. Plaksin. Nova Science Publishers, Inc.: Hauppauge, NY, 2013. 1–41.

2. Sadakane, M.; Ostuni, A.; Pope, M. T. Formation of 1 : 1 and 2 : 2 complexes of Ce(III) with the heteropolytungstate anion  $\alpha_2$ -[P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>]<sup>10-</sup>, and their interaction with proline. The structure of [Ce<sub>2</sub>(P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]<sup>14-</sup>. *Journal of the Chemical Society, Dalton Transactions.* **2002**, No. 1, 63–67 DOI: 10.1039/b105967j.

3. Ostuni, A.; Pope, M. T. A large heteropolytungstotetracerate(III) based on a new divacant lacunary derivative of the Wells–Dawson tungstophosphate anion. *Comptes Rendus de l'Académie des Sciences – Serie IIC – Chemistry.* **2000**, *3* (3), 199–204 DOI: 10.1016/S1387-1609(00)00133-X.

4. Liu, J.; Wang, E.; Zhou, Y.; Hu, C. Synthesis and anti-influenza virus activities of heteropoly compounds containing rare earth elements. *Yao Xue Xue Bao.* **1998**, *33* (7), 544–547. Вісник Донецького національного університету імені Василя Стуса. Сер. хімічні науки. № 2, 2017

5. Peacock, R. D.; Weakley, T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. *Journal of the Chemical Society A: Inorganic, Physical, Theoretical.* **1971**, No. 11, 1836–1839 DOI: 10.1039/J19710001836.

6. Xue, G.; Vaissermann, J.; Gouzerh, P. Cerium(III) Complexes with Lacunary Polyoxotungstates. Synthesis and Structural Characterization of a Novel Heteropolyoxotungstate Based on  $\alpha$ -[SbW<sub>9</sub>O<sub>33</sub>]<sup>9–</sup> Units. *Journal of Cluster Science*. **2002**, *13* (3), 409–421 DOI: 10.1023/A:1020555116986.

7. Ismail, A.H.; Dickman, M. H.; Kortz, U. 22-Isopolytungstate Fragment [H<sub>2</sub>W<sub>22</sub>O<sub>74</sub>]<sup>14–</sup> Coordinated to Lanthanide Ions. *Inorganic Chemistry*. **2009**, *48* (4), 1559–1565 DOI: 10.1021/ic801946m.

8. Prasad, S.; Brito, A. L. F. D.; Muniz, A. C. S.; Leite, V. D. Electrometric investigations on the formation of cerium(III) tungstates as a function of pH. *Eclética Química*. **2000**, *25*, 77–87 DOI: 10.1590/S0100-46702000000100007.

9. Mariichak, O. Yu.; Rozantsev, G. M.; Radio, S. V. Synthesis, FTIR spectroscopy, and surface micromorphology of Ce(III) and Ce(IV)-containing heteropoly tungstates with Peacock–Weakley structure of anion. *Visnyk Odeskogo Natsionalnogo Universytetu. Khimiia / Odesa National University Herald. Chemistry.* **2017**, 22 (3(63)), 42–52. DOI: 10.18524/2304-0947.2017.3(63).109388. (in Russian)

10. Charlot, G. *Metody analiticheskoy khimii. Kolichestvennyi analiz neorganicheskikh soedinenii* [Methods of analytical chemistry. Quantitative analysis of inorganic compounds]; Moscow: Khimiya, 1965. (in Russian)

11. Korostelev, P. P. *Prigotovlenie rastvorov dlia khimicheckikh i analiticheskikh rabot* [Preparation of solutions for chemical and analytical studies]; Moscow: Nauka, 1964. (in Russian)

12. Schwarzenbach, G.; Flaschka, H. Kompleksonometricheskoe titrovanie [Complexonometric Titrations]; Moscow: Khimiya, 1970. (in Russian)

13. Cruywagen, J. J.; Izak F. J. Van Der Merve. Tungsten(VI) equilibria: A Potentiometric and calorimetric investigation. *Journal of the Chemical Society, Dalton Transactions*. **1987**, No. 7, 1701–1705 DOI: 10.1039/DT9870001701.

14. Rozantsev, G. M.; Radio, S. V.; Belousova, E. E. Changes of the isopoly tungstate anion state in aqueous solutions during the chemical equilibria achievement. *Voprosy khimii i khimicheskoi tekhnologii / Issues of Chemistry and Chemical Technology*. **2005**, No. 5, 32–36. (in Russian)

15. Radio, S. V.; Kryuchkov, M. A.; Zavialova, E. G.; Baumer, V. N.; Shishkin, O.V.; Rozantsev, G.M. Equilibrium in the acidified aqueous solutions of tungstate-anion: synthesis of Co(II) isopoly tungstates. Crystal structure of Co(II) paratungstate B  $Co_5[W_{12}O_{40}(OH)_2]$ ·37H<sub>2</sub>O. *Journal of Coordination Chemistry.* **2010**, *63* (10), 1678–1689 DOI:10.1080/00958972.2010.489947.

16. X-Ray PDF JCPDS, Philadelphia 1964–1989.

17. Rozantsev, G. M.; Radio, S. V.; Gumerova, N. I.; Baumer, V. N.; Shishkin, O. V. Phase formation in the Ni<sup>2+–</sup> WO<sub>4</sub><sup>2–</sup> – H<sup>+</sup>– H<sub>2</sub>O system (Z = 1.00). Crystal structure and properties of sodium heteropolyhexatursten nickelate(2+) Na<sub>4</sub>[Ni(OH)<sub>6</sub>W<sub>6</sub>O<sub>18</sub>]·16H<sub>2</sub>O. *Journal of Structural Chemistry.* **2009**, *50* (2), 296–305 DOI: 10.1007/s10947-009-0041-z.

18. Mariichak, O.Yu.; Rozantsev, G.M.; Radio, S.V. Synthesis and Study of Heteropoly Decatungstosamarates(III) With Peacock–Weakley Type Anion. *Voprosy khimii i khimicheskoi tekhnologii / Issues of Chemistry and Chemical Technology*. **2017**, No. 6(115), 23–31. (in Russian)

## ПРАВИЛА ДЛЯ АВТОРІВ

## 1. Основні положення

Для публікації у «Віснику Донецького національного університету імені Василя Стуса. Серія хімічні науки» приймаються не опубліковані раніше результати оригінальних досліджень та оглядові статті з аналітичної, неорганічної, органічної, фізичної та колоїдної, квантової та структурної хімії, біохімії, медичної та фармацевтичної хімії, хімії високомолекулярних сполук, полімерів та композитів, нанохімії, вуглехімії, хімічного матеріалознавства, хімічної екології та агрохімії, хімічної освіти.

Обсяг рукопису, як правило, не має перевищувати 20 сторінок тексту, включаючи рисунки, таблиці, список літератури (у випадку оглядових статей – до 40 сторінок). Формат сторінки – А4, оформлення відповідно до наведених нижче правил.

Всі надіслані до редакції рукописи проходять рецензування. Статті, що не відповідають тематиці журналу, містять плагіат або оформлені без дотримання вимог, до розгляду не приймаються.

Редакція залишає за собою право проводити редакційну правку рукописів, а також повертати статті авторам для доопрацювання та виправлення.

Публікація здійснюється безкоштовно.

## 2. Перелік документів, що подаються до редакції

- супровідний лист від організації, у якій виконана робота;

*– рукопис статті* (українською, російською або англійською мовою), надрукованих з одного боку аркуша паперу;

– *відомості про авторів* (повністю прізвище, ім'я та по батькові, науковий ступінь, вчене звання, посада, місце роботи, поштова адреса, е-mail; окремо навести дані автора, що вестиме переписку з редколегією (corresponding author) – контактний телефон, е-mail, поштова адреса для переписки);

– згоду на збір і обробку персональних даних (Додаток 5);

*– пропозиції* щодо двох потенційних рецензентів зі сторонніх організацій (із зазначенням прізвища, імені та по батькові, місця роботи та контактного е-mail кожного з рецензентів).

Всі перелічені документи подаються в одному екземплярі на адресу редколегії журналу: Хімічний факультет, Донецький національний університет імені Василя Стуса, вул. 600-річчя, 21, 21021.

Одночасно подається електронна версія рукопису, що включає наступні файли:

– *повний текст статті* мовою оригіналу з таблицями, рисунками, наведеними після першого згадування, переліком посилань під назвою *manuscript\_Author* (із зазначенням у назві файлу прізвища першого автора);

- відомості про авторів під назвою authors\_Author (Додаток 1);

– анотація та ключові слова трьома мовами (українська, англійська, російська) під назвою *ab-stracts\_Author* (Додаток 2);

- інформаційний блок англійською мовою під назвою info\_Author (Додаток 4);

*– рисунки* окремими файлами під назвою *figure1*, *figure2* тощо (розширення \*.tiff, \*.bmp, \*.jpeg та ін.), а також вихідні варіанти зображень, доступні для редагування.

Електронні версії документів надсилаються на e-mail редколегії журналу: bulletin-chem.div@donnu.edu.ua.

## 3. Вимоги до оформлення рукопису

Структура статті

– індекс УДК у верхньому лівому куті сторінки;

– назва статті (заголовок має бути інформативним, використання абревіатур не допускається, за винятком загальновживаних; шрифт напівжирний, прописні літери, вирівнювання по центру, без перенесення слів);

– ініціали та прізвища авторів;

– повна назва організації, в якій виконана робота, місто, країна; якщо організацій декілька, перед назвою відповідної організації та після прізвища автора від неї поставити верхні індекси <sup>а</sup>, <sup>b</sup>, <sup>с</sup> тощо;

- електронна пошта автора-кореспондента;

- анотація та ключові слова мовою оригіналу;

– основний текст статті, що містить розділи: вступ (теоретичний аналіз), експериментальна частина, результати та їх обговорення, висновки;

– подяки (за необхідності);

– перелік посилань.

#### Анотація

Анотація обсягом не менше 1800 знаків має бути інформативною (без загальних слів), відображаючи основний зміст статті: завдання наукового дослідження, використані методи, підходи, конкретні результати, виявлені закономірності, зроблені висновки. Відомості, що містяться в заголовку статті, не повинні повторюватися в тексті анотації.

Анотація має бути підготована трьома мовами (українська, англійська, російська). Для авторів – не громадян України – україномовний переклад анотації та ключових слів здійснюватиме редколегія. *Ключові слова* (від 3 до 8) подаються трьома мовами.

Приклад оформлення анотації і ключових слів наведено в Додатку 2.

#### Зміст статті

У *вступі* формулюється постановка проблеми в загальному вигляді та зв'язок із важливими науковими чи практичними завданнями, аналіз останніх досліджень і публікацій, в яких започатковано розв'язання даної проблеми і на які спирається автор, виділення не вирішених раніше частин загальної проблеми, яким присвячується означена стаття, формулювання мети роботи (постановка завдання).

В *основному розділі* викладаються основні матеріали дослідження з повним обґрунтуванням отриманих наукових результатів. Він включає в себе експериментальну частину, результати і їх обговорення. Зміст статті має бути викладено ясно і коротко. Варто уникати загальних положень, виведення проміжних формул і рівнянь, повторення результатів у тексті, таблицях та на рисунках.

У *висновках* стисло і чітко підсумовуються основні результати, отримані авторами, і перспективи подальшого наукового пошуку у даному напрямку.

*Перелік посилань* подається загальним списком у кінці рукопису в порядку цитування в тексті англійською мовою.

Редакція попереджає, що за використання матеріалів, що охороняються авторським правом, відповідальність несе автор статті. Автори можуть використовувати такі матеріали тільки за згодою правовласника.

#### Текст статті

Текст рукопису має бути підготований в MS Word (розширення \*.doc / \*.docx).

Параметри сторінки: книжкова орієнтація, поля документа дзеркальні, по 2 см, корінець 0 см.

Шрифт Times New Roman, розмір 14 пт, вирівнювання по ширині; міжрядковий інтервал 1,5. Відступ першого рядка 1,25 пт (крім тексту, вирівняного по центру).

Текст статті не має містити переносів, порожніх рядків, зайвих пробілів, табуляції, розривів сторінки, інтервалів до та після абзаців.

Всі сторінки мають бути пронумеровані – внизу по центру.

Рисунки й таблиці розташовуються у тексті після першого згадування.

## Рисунки

Рисунки мають бути надані окремими файлами у форматі \*.tiff, \*.bmp, \*.jpeg тощо, а також включені в рукопис після першого згадування і пронумеровані (рис. 1, рис. 2, …). Елементи складеного рисунка мають бути додатково пронумеровані літерами (а, б, в... або а, b, с... залежно від мови написання статті). Рисунки мають бути чорно-білі або у відтінках сірого, з розширенням 300 dpi. Графіки мають бути побудовані без ліній сітки, з обов'язковими короткими та чіткими підписами осей.

Кожен рисунок повинен мати підпис (не поєднаний з рисунком), вирівняний по ширині сторінки (Рис. 1. Назва рисунка).

Уся текстова інформація на рисунках має бути чіткою та розбірливою. Додаткову інформацію слід виносити в підрисунковий підпис. Необхідно слідкувати за тим, щоб після можливого масштабування рисунка висота літер та цифр на рисунку залишалась не меншою 2 мм. Всі лінії мають бути не меншими 0,25 пт після приведення рисунка до стандартної ширини.

### Таблиці

Таблиці мають бути створені у MS Word і розташовані безпосередньо в тексті статті після першого згадування (табл. 1). Заголовки таблиць (Таблиця 1. Назва) мають бути розміщені над таблицями і вирівняні по центру; примітки до таблиць – під таблицями, вирівнювання – по ширині.

Вирівнювання в клітинках таблиці – по центру і по висоті, відступ першого рядка відсутній.

#### Формули, терміни та одиниці вимірювання

Математичні формули, їх компоненти набираються за допомогою редактора формул. Формули мають наскрізну нумерацію в круглих дужках справа (з посиланням у тексті на пронумеровану формулу).

Хімічні формули мають бути створені в одному з редакторів хімічної графіки (ChemSketch, ChemDraw тощо) шрифтом Times New Roman.

Усі терміни, поняття, умовні позначення мають бути загальновживаними.

Одиниці вимірювань наводяться в системі СІ.

У якості роздільників цілої і дробової частини чисел для україномовних і російськомовних рукописів має використовуватись кома «,», для англомовних – точка «.».

### Перелік посилань

Посилання на джерело в тексті статті дається арабською цифрою в квадратних дужках. Перелік посилань наводиться англійською мовою в кінці статті в порядку першого згадування та оформлюється згідно стилю *American Chemical Society (with titles and DOI, sentence case)*. Не допускається наводити посилання на неопубліковані матеріали.

Приклади оформлення переліку посилань наведено в Додатку 3.

## 4. Вимоги до оформлення інформаційного блоку англійською мовою

Інформаційний блок використовується для подання даних про статтю до міжнародних наукометричних баз. Він містить інформацію про назву статті, авторів, повну назву організації, місто і країну, анотацію, ключові слова і перелік посилань (всі кириличні джерела транслітеруються латинським алфавітом).

Транслітерація здійснюється відповідно до Постанови Кабінету Міністрів України № 55 від 27 січня 2010 р. «Про впорядкування транслітерації українського алфавіту латиницею» (для української мови) або вимог наказу ФМС Росії від 26 березня 2014 р. № 211 (для російської мови).

Онлайнові транслітератори:

– стандартна українська транслітерація (у транслітерації «Паспортна КМУ 2010») (<u>http://www.slovnyk.ua/services/translit.php</u>);

- транслит по-русски (<u>http://translit.net/ru/zagranpasport/</u>).

Для оформлення кириличних цитувань необхідно транслітерувати прізвища та ініціали авторів та назви видань. Після наведення транслітерованої назви в квадратних дужках наводиться авторський англомовний варіант назви статті. Якщо першоджерело україно- або російськомовне, то в кінці його опису в круглих дужках зазначають мову публікації: (in Ukrainian) або (in Russian).

В елементах опису не можна використовувати фігурні лапки (лише звичайні прямі (" "), не можна заміняти латинські літери на кириличні.

Назви періодичних видань (журналів) наводяться відповідно до офіційного латинського написання за номером реєстрації ISSN (можна перевірити на сайті журналу або в науковій онлайн-базі (CAS Source Index <u>http://cassi.cas.org/search.jsp</u>, elibrary.ru, sciencedirect.com, «Наукова періодика України» тощо). Скорочені назви видань можна знайти за посиланням <u>http://www.personal.leeds.ac.uk/~menmwi/ISIabbr/A abrvjt.html</u>.

За наявності перекладної та національної версії періодичного видання для посилань слід обрати перекладну.

Список інформаційних джерел блоку *References* повинен бути оформлений відповідно до міжнародного стандарту посилань *American Chemical Society style* (*with titles and DOI, sentence case*) (Дода*ток 3*). Правила складання та приклади застосування стилю доступні за посиланням: <u>http://pubs.acs.org/doi/pdf/10.1021/bk-2006-STYG.ch014</u>. Автоматично створювати посилання на джерело можна з використанням он-лайн ресурсів <u>http://www.citationmachine.net/, http://www.bibme.org/</u> (обравши стиль оформлення American Chemical Society (with titles and DOI, sentence case)) або бібліографічних менеджерів, наприклад, Mendeley, Zotero.

Приклад оформлення інформаційного блоку наведено в Додатку 4.

## Додаток 1. Приклад оформлення відомостей про авторів

Дані про всіх авторів статті наводяться в окремому файлі у наступному форматі:

**Іванов Іван Іванович** – канд. хім. наук, доцент, доцент кафедри біохімії та фізичної хімії, Донецький національний університет імені Василя Стуса, вул. 600-річчя, 21, м. Вінниця, 21021, Україна Контактний телефон: +38 050 111 11 11 Е-mail: i.ivanov@donnu.edu.ua

**Corresponding author:** Петров Петро Петрович Контактний телефон: +38 063 222 22 22 E-mail: petrov@donnu.edu.ua Поштова адреса для переписки: Хімічний факультет, Донецький національний університет імені Василя Стуса, вул. 600-річчя, 21, м. Вінниця, 21021, Україна

## Додаток 2. Приклад оформлення анотації та ключових слів

## УДК 54-165; 548.32; 546(185+650)

# До питання розрахунку границь заміщень у твердих розчинах монацитів рідкісноземельних елементів складу La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, де Ln = Pr – Dy

Є. І. Гетьман, Л. Б. Ігнатова, С. В. Радіо

Раніше авторами було запропоновано (Get'man, E.I.; Radio, S.V. *Inorg. Mater.* 2017, DOI: 10.1134/S0020168517070044) спосіб оперативного визначення рівноважних границь розчинності за заданих температур або температури розпаду для заданих складів із діаграм термодинамічної стабільності (залежності температур розпаду  $La_{1-x}Ln_xPO_4$  від номеру рідкісноземельного елементу (P3E)). Проте для проміжних складів (за значень *x*, що відрізняються від 0,02; 0,05; 0,1; 0,2; 0,5) було дано тільки їх приблизну оцінку, оскільки вона проводилась шляхом інтерполяції в областях нелінійної залежності температури розпаду твердого розчину від складу. В даній роботі ми пропонуємо визначати границі розчинності РЗЕ в  $La_{1-x}Ln_xPO_4$  тільки за температурою розпаду або температури розпаду тільки за границею розчинності без використання будь-яких інших додаткових даних із графічних взаємозалежностей, що описуються рівнянням Р. Беккера. У роботі проведено аналіз значень параметрів взаємодії (Q, кДж/моль) для систем  $La_{1-x}Eu_xPO_4$  та  $La_{1-x}Gd_xPO_4$ , що отримані різними авторами за період 2007–2017 рр різними методами (*Ab initio*, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; *Ab initio*/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).

На підставі використання кристалохімічного методу визначення енергії змішування твердих розчинів В. С. Урусова і рівняння для регулярних розчинів Р. Беккера представлено графіки для зручного визначення меж заміщень у твердих розчинах зі структурою монациту  $La_{1-x}Ln_xPO_4$ , де Ln -рідкісноземельні елементи ряду Pr - Dy. Запропоновані графічні залежності дозволяють визначати межі зміщений за заданими температурами розпаду твердих розчинів або визначати температури розпаду (стабільності) твердих розчинів за заданими межами заміщень без використання будь-яких інших параметрів. Графічні залежності можуть бути корисні як фахівцям, що працюють в області іммобілізації радіоактивних відходів для визначення максимальної кількості поглинача радіоактивної речовини, який входить до структури, так і в області створення нових люмінесцентних, лазерних та інших матеріалів, що містять невелику кількість активатора.

Ключові слова: структура монациту, тверді розчини, фосфати, рідкісноземельні елементи.

#### УДК 54-165; 548.32; 546(185+650)

## К вопросу расчета границ замещений в твердых растворах монацитов редкоземельных элементов состава La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, где Ln = Pr – Dy

Е. И. Гетман, Л. Б. Игнатова, С. В. Радио

Ранее авторами был предложен (Get'man, E. I.; Radio, S. V. Inorg. Mater. 2017. DOI: 10.1134/S0020168517070044) способ оперативного определения равновесных границ растворимости при заданных температурах или температуре распада для заданных составов из диаграмм термодинамической стабильности ( зависимости температур распада La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub> от номера редкоземельного элемента (РЗЭ)). Однако для промежуточных составов (при значениях *x*, отличающихся от 0,02; 0,05; 0,1; 0,2; 0,5) была дана только их приблизительная оценка, поскольку она проводилась путем интерполяции в областях нелинейной зависимости температуры распада твердого раствора от состава. В данной работе мы предлагаем определять границы растворимости РЗЭ в La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub> только по температуре распада или температуры распада только по границе растворимости без использования какихлибо других дополнительных данных из графических взаимозависимостей, которые описываются уравнением Р. Беккера. В работе проведен анализ значений параметров взаимодействия (Q, кДж/моль) для систем La<sub>1-x</sub>Eu<sub>x</sub>PO<sub>4</sub> и La<sub>1-x</sub>Gd<sub>x</sub>PO<sub>4</sub>, полученные разными авторами за период 2007–2017 гг разными методами (Ab initio, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; Ab initio/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).

На основе использования кристаллохимического метода определения энергии смешения твердых растворов В. С. Урусова и уравнения для регулярных растворов Р. Беккера представлены графики для удобного определения границ замещений в твердых растворах со структурой монацита La<sub>1-x</sub>Ln<sub>x</sub>PO<sub>4</sub>, где Ln – редкоземельные элементы ряда Pr – Dy. Предложенные графические зависимости позволяют определять границы смещений по заданным температурам распада твердых растворов или определять температуры распада (стабильности) твердых растворов по заданным пределам замещений без использования каких-либо других параметров. Графические зависимости могут быть полезны как специалистам, работающим в области иммобилизации радиоактивных отходов для определения максимального количества поглотителя радиоактивного вещества, входящего в структуру, так и в области создания новых люминесцентных, лазерных и других материалов, содержащих небольшое количество активатора.

# The question of calculating the substitution limits in solid solutions of monazites of rare-earth elements with structure $La_{1-x}Ln_xPO_4$ , where Ln = Pr - Dy

E. I. Get'man, L. B. Ignatova, S. V. Radio

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine

proposed (Get'man, E. I.; Earlier. the authors Radio, S. V. 2017. Inorg. Mater. DOI: 10.1134/S0020168517070044) to quickly determine equilibrium solubility limits at given temperatures or measure decay temperatures for specified compositions based on the diagrams of thermodynamic stability (dependences of  $La_{1-x}Ln_xPO_4$  decay temperatures from rare-earth elements number). However, in case of intermediate compositions (at x other than 0.02, 0.05, 0.1, 0.2, 0.5), we could find only approximate values, since the measurements were carried out by interpolation in the regions of nonlinear dependence of solid solution temperature from its composition. In the paper, we propose to determine the solubility limits of REE in La<sub>1-</sub>  $_{\rm x} {\rm Ln}_{\rm x} {\rm PO}_4$  only based on the decomposition temperature or measure the decomposition temperature only based on solubility limits without using any other additional data from the graphical interdependencies described by the R. Becker equation. We also analyzed the values of interaction parameters (Q, kJ/mol) in  $La_{1-x}Eu_xPO_4$  and  $La_{1-x}Gd_xPO_4$  systems, obtained using different methods by different authors during the period of 2007–2017 (Ab initio, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; Ab initio/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).

V. S. Urusov crystallochemical method for determining solid solution mixing energy and R. Becker equation for regular solutions were used to represent the graphs for quick determination of substitution limits in solid solutions of  $La_{1-x}Ln_xPO_4$  with monazite structure, where Ln represents rare-earth elements in Pr – Dy series. The proposed graph dependencies make it possible to determine substitution limits for orthophosphates  $La_{1-x}Ln_xPO_4$  with monazite structure (Ln = Pr – Dy; 0.005 < x < 0.99) based on the specified decomposition temperatures of solid solutions or determine the decomposition (stability) temperatures of solid solutions based on the specified substitution limits without any other parameters using. Graph dependencies can be useful both for specialists working in the field of immobilization of radioactive waste to determine the maximum amount

of radioactive material absorber contained in the structure, as well as in the field of creating new luminescent, laser and other materials containing a small amount of activator.

Keywords: monazite structure, solid solutions, phosphates, rare-earth elements.

# Додаток 3. Приклад оформлення переліку посилань за стилем American Chemical Society (with titles and DOI, sentence case)

До бібліографічного посилання включаються всі автори (редактори, якщо автор відсутній) через крапку з комою; між ініціалами автора та його прізвищем ставиться кома. За наявності бажано наводити DOI публікації.

#### Стаття в журналі

Author 1; Author 2; Author 3; etc. Title of Article. *Journal Abbreviation* Year, *Volume* (Issue), Inclusive Pagination DOI: xxx.

Caruso, R. A.; Susha, A.; Caruso, F. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. *Chem. Mater.* **2001**, *13* (2), 400–409 DOI: 10.1021/cm001175a.

Zloh, M.; Esposito, D.; Gibbons, W. A. Helical Net Plots and Lipid Favourable Surface Mapping of Transmembrane Helices of Integral Membrane Proteins: Aids to Structure Determination of Integral Membrane Proteins. *Internet J. Chem.* [Online] **2003**, *6*, Article 2. http://www.ijc.com/articles/2003v6/2/ (accessed Oct 13, 2004).

*Варіант з перекладом* (назва статті [Title of article] наводиться в авторському англійському перекладі, а не перекладається самостійно):

Author, A. A. Nazva statti [Title of article]. *Nazva Jurnalu*, **2015**, *4* (1), 125–135. (in Ukrainian)

**Книга** (якщо посиланням є вся книга, номери сторінок не наводяться) Друкована книга, розділ книги

Author 1; Author 2; Author 3; etc. Chapter Title. *Book Title*, Edition Number; Series Information (if any); Publisher: Place of Publication, Year; Volume Number, Pagination.

Author 1; Author 2; Author 3; etc. *Book Title*; Series Information (if any); Publisher: Place of Publication, Year; Volume Number, Pagination.

Le Couteur, P.; Burreson, J. Napoleon's Buttons: How 17 Molecules Changed History; Jeremy P. Tarcher/Putnam: New York, 2003.

Morris, R. *The Last Sorcerers: The Path from Alchemy to the Periodic Table*; Joseph Henry Press: Washington, DC, 2003; pp 145–158.

#### Книга, розділ книги під редакцією

Author 1; Author 2; Author 3; etc. Chapter Title. In *Book Title*, Edition Number; Editor 1, Editor 2, etc., Eds.; Series Information (if any); Publisher: Place of Publication, Year; Volume Number, Pagination.

Author 1; Author 2; Author 3; etc. In *Book Title*, Edition Number; Editor 1, Editor 2, etc., Eds.; Series Information (if any); Publisher: Place of Publication, Year; Volume Number, Pagination.

або

*Book Title*, Edition Number; Editor 1, Editor 2, etc., Eds.; Series Information (if any); Publisher: Place of Publication, Year; Volume Number, Pagination.

Almlof, J.; Gropen, O. Relativistic Effects in Chemistry. In *Reviews in Computational Chemistry*; Lip-kowitz, K. B., Boyd, D. B., Eds.; VCH: New York, 1996; Vol. 8, pp 206–210.

Asmus, K. D. Recent Aspects of Thiyl and Perthiyl Free Radical Chemistry. In *Active Oxygens, Lipid Peroxides, and Antioxidants*; Yagi K., Ed.; Japan Scientific Societies: Tokyo; CRC: Boca Raton, FL, 1993; pp 57–67.

Advances in Inorganic Chemistry and Radiochemistry; Emeléus, H. J., Sharpe, A. G., Eds.; Academic: New York, 2001.

#### Електронна книга

Author 1; Author 2; Author 3; etc. *Book Title* [Online]; Series Information (if any); Publisher: Place of Publication, Year; Volume Number, Pagination. URL (accessed Month Day, Year).

Tour, J. M. *Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming* [Online]; World Scientific: River Edge, NJ, 2003; pp 177–180. http://legacy.netlibrary.com/ebook\_info.asp?product\_id=91422&piclist=19799,20141,20153 (accessed Nov 7, 2004).

Oleksyn, B. J.; Stadnicka, K.; Sliwinski, J. Structural Chemistry of Enamines: A Statistical Approach. In *The Chemistry of Enamines* [Online]; Rappoport, Z., Ed.; The Chemistry of Functional Groups; Patai, S., Rappoport, Z., Series Eds.; Wiley & Sons: New York, 1994; Chapter 2, pp 87–218. http://www3.interscience.wiley.com/cgi-bin/summary/109560980/SUMMARY (accessed April 24, 2005).

Petty, M. C. *Molecular Electronics: From Principles to Practice* [Online]; Wiley & Sons: Chichester, UK, 2007; pp 65–128. http://onlinelibrary.wiley.com/book/10.1002/9780470723890 (accessed Oct 20, 2015).

#### Варіант з перекладом:

Author, A. A. *Nazva knygy* [Title of book]. Kiev: Naukova dumka, 2015. (in Ukrainian) Author, A. A. Nazva rozfilu [Subtitle]. In *Nazva knygy* [*Title of book*]; Kiev: Aspekt, 2015; pp 33–35. (in Ukrainian)

### Тези доповідей, матеріали конференцій, семінарів

Author 1; Author 2; Author 3; etc. Title of Presentation. In *Title of the Collected Work*, Proceedings of the Name of the Meeting, Location of Meeting, Date of Meeting; Editor 1, Editor 2, etc., Eds.; Publisher: Place of Publication, Year; Abstract Number, Pagination.

Boehm, H. P. Surface Properties of Carbons. In *Structure and Reactivity of Surfaces*, Proceedings of the European Conference, Trieste, Italy, Sept 13–16, 1988; Zecchina, A., Cost, G., Morterra, C., Eds.; Elsevier: Amsterdam, 1988; pp 145–157.

Prasad, A.; Jackson, P. *Abstracts of Papers, Part 2*, 212th National Meeting of the American Chemical Society, Orlando, FL, Aug 25–29, 1996; American Chemical Society: Washington, DC, 1996; PMSE 189.

#### Варіант з перекладом

Contributor, A. B. Nazva tez [Title of article]. In *Title of book (якщо є): Proceedings of the Conference Name*. Kiev, Ukraine, June 1–3, 2015; Kiev: VNLU, 2015; pp 30–35). (in Ukrainian)

#### Патенти

Patent Owner 1; Patent Owner 2; etc. (assignee). Title of Patent. Patent Number, Date.

Sheem, S. K. Low-Cost Fiber Optic Pressure Sensor. U.S. Patent 6,738,537, May 18, 2004.

Stern, M. K.; Cheng, B. K. M. (Monsanto Co., USA). Process for Preparing N-(p-nitroaryl)amides via Reaction of Nitrobenzene with Nitriles. U.S. Patent 5,380,946, January 10, 1995.

#### Додаток 4. Приклад оформлення інформаційного блоку англійською мовою

# The question of calculating the substitution limits in solid solutions of monazites of rare-earth elements with structure $La_{1-x}Ln_xPO_4$ , where Ln = Pr - Dy

E. I. Get'man, L. B. Ignatova, S. V. Radio

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine

Earlier, the authors proposed (Get'man, E. I.; Radio, S. V. *Inorg. Mater.* 2017, DOI: 10.1134/S0020168517070044) to quickly determine equilibrium solubility limits at given temperatures or measure decay temperatures for specified compositions based on the diagrams of thermodynamic stability (dependences of  $La_{1-x}Ln_xPO_4$  decay temperatures from rare-earth elements number). However, in case of intermediate compositions (at *x* other than 0.02, 0.05, 0.1, 0.2, 0.5), we could find only approximate values, since the measurements were carried out by interpolation in the regions of nonlinear dependence of solid solution temperature from its composition. In the paper, we propose to determine the solubility limits of REE in

 $La_{1-x}Ln_xPO_4$  only based on the decomposition temperature or measure the decomposition temperature only based on solubility limits without using any other additional data from the graphical interdependencies described by the R. Becker equation. We also analyzed the values of interaction parameters (Q, kJ/mol) in  $La_{1-x}Eu_xPO_4$  and  $La_{1-x}Gd_xPO_4$  systems, obtained using different methods by different authors during the period of 2007–2017 (*Ab initio*, Li et al., 2014; Strain energy, Mogilewsky, 2007; Drop calorimetry, Popa et al., 2007; *Ab initio*/strain energy, Kowalski and Li, 2016; Drop solution, Neumeier et al., 2017).

V.S. Urusov crystallochemical method for determining solid solution mixing energy and R. Becker equation for regular solutions were used to represent the graphs for quick determination of substitution limits in solid solutions of  $La_{1-x}Ln_xPO_4$  with monazite structure, where Ln represents rare-earth elements in Pr – Dy series. The proposed graph dependencies make it possible to determine substitution limits for orthophosphates  $La_{1-x}Ln_xPO_4$  with monazite structure (Ln = Pr - Dy; 0.005 < x < 0.99) based on the specified decomposition temperatures of solid solutions or determine the decomposition (stability) temperatures of solid solutions based on the specified substitution limits without any other parameters using. Graph dependencies can be useful both for specialists working in the field of immobilization of radioactive waste to determine the maximum amount of radioactive material absorber contained in the structure, as well as in the field of creating new luminescent, laser and other materials containing a small amount of activator.

Keywords: monazite structure, solid solutions, phosphates, rare-earth elements.

#### References

1. Grechanovsky, A. E.; Eremin, N. N.; Urusov, V. S. Radiation resistance of LaPO<sub>4</sub> (monazite structure) and YbPO<sub>4</sub> (zircon structure) from data of computer simulation. *Physics of the Solid State*. **2013**, *55* (9), 1929–1935 DOI: 10.1134/s1063783413090138.

2. Boatner, L. A. Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime. *Reviews in Mineralogy and Geochemistry*. **2002**, *48* (1), 87–121 DOI: 10.2138/rmg.2002.48.4.

3. Schlenz, H.; Heuser, J.; Neumann, A.; Schmitz, S.; Bosbach, D. Monazite as a suitable actinide waste form. *Zeitschrift für Kristallographie - Crystalline Materials*. **2013**, 228 (3), 113–123 DOI: 10.1524/zkri.2013.1597.

4. Meldrum, A.; Boatner, L.; Wang, L.; Ewing, R. Ion-beam-induced amorphization of LaPO<sub>4</sub> and ScPO<sub>4</sub>. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*. **1997**, *127–128*, 160–165 DOI: 10.1016/s0168-583x(96)00873-7.

5. Meldrum, A.; Boatner, L. A.; Ewing, R. C. A comparison of radiation effects in crystalline ABO<sub>4</sub>-type phosphates and silicates. *Mineralogical Magazine*. **2000**, *64* (2), 185–194 DOI: 10.1180/002646100549283.

6. Popa, K.; Wallez, G.; Bregiroux, D.; Raison, P.; Martel, L.; Arinicheva, Y.; Neumeier, S.; Somers, J.; Konings, R. Recent progress in actinide phosphates chemistry. *Plutonium Futures – The Science 2016, A Topical Conference on Plutonium and Actinides, Supporting Safe and Secure Plutonium Research as Part of the Global Energy Mix, 18–22 August 2016, Baden-Baden, Germany.* **2016**, 271–275.

7. Get'Man, E. I.; Radio, S. V. Mixing energies (interaction parameters) and decomposition temperatures in solid solutions of monazites of rare earth elements with structure  $La_{1-x}Ln_xPO_4$ . *Inorganic Materials*. **2017**, *53* (7), 718–721 DOI: 10.1134/s0020168517070044.

8. Becker, R. Über den Aufbau binarer Legierungen (On the constitution of binary alloys), Zeitschrift für Metallkunde. 1937, 29, 245–249 (in German)

9. Neumeier, S.; Kegler, P.; Arinicheva, Y.; Shelyug, A.; Kowalski, P. M.; Schreinemachers, C.; Navrotsky, A.; Bosbach, D. Thermochemistry of  $La_{1-x}Ln_xPO_4$ -monazites (Ln = Gd, Eu). *The Journal of Chemical Thermodynamics*. **2017**, *105*, 396–403 DOI: 10.1016/j.jct.2016.11.003.

10. Urusov, V. S. Energetic theory of miscibility gaps in mineral solid solutions. *Fortschritte der Mineralogie*. **1975**, *52*, 141–150.

11. Urusov, V. S. *Teoriia izomorfnoi smesimosti* [The Theory of Isomorphous Miscibility]; Moscow: Nauka, 1977. (in Russian)

12. Urusov, V. S.; Eremin, N.N. *Kristallokhimiya. Kratkiy kurs. Chast' 2. Uchebnoye posobiye* [Crystal chemistry. Short course. Part 2. Textbook]; Moscow: Publishing house of Moscow University, 2005. (in Russian)

13. Ni, Y.; Hughes, J. M.; Mariano, A. N. Crystal chemistry of the monazite and xenotime structures. *American Mineralogist.* **1995**, 80 (1–2), 21–26 DOI: 10.2138/am-1995-1-203.

14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A*. **1976**, *32* (5), 751–767 DOI: 10.1107/s0567739476001551.

15. Hoppe, R. Madelung Constants as a new Guide to the Structural Chemistry of Solids. *Advances in Fluorine Chemistry*. **1970**, *6*, 387–438.

16. Batsanov, S. S. The Concept of Electronegativity. Conclusions and Prospects. *Russian Chemical Reviews*. **1968**, *37* (5), 332–351 DOI: 10.1070/rc1968v037n05abeh001639.

17. Xue, D.; Zuo, S.; Ratajczak, H. Electronegativity and structural characteristics of lanthanides. *Physica B: Condensed Matter*. **2004**, *352* (1–4), 99–104 DOI: 10.1016/j.physb.2004.06.060.

18. Batsanov, S. S. *Strukturnaya khimiya. Fakty i zavisimosti* [Structural chemistry. Facts and dependencies]; Moscow: Dialog-MSU, 2000. (in Russian)

19. Nicácio, D. L.; Gouveia, E. A.; de Araujo, M. T.; Guedes, I.; K-Loong, G.; Boatner, L. A. Infraredto-visible energy upconversion luminescence in orthophosphate NdPO<sub>4</sub> irradiated with cw 800 nm light. *Annals of Optics (XXVI Encontro Nacional de Física da Matéria Condensada).* **2003**, *5*, 438–440.

20. Colomer, M.; Bartolomé, J.; Ortiz, A.; Andrés, A.D. Raman characterization and photoluminescence properties of  $La_{1-x}Tb_xPO_4 \cdot nH_2O$  and  $La_{1-x}Tb_xPO_4$  phosphor nanorods prepared by microwave-assisted hydro-thermal synthesis. *Ceramics International.* **2017**, *43* (14), 10840–10847 DOI: 10.1016/j.ceramint.2017.05.110. 21. Yang, P.; Quan, Z.; Li, C.; Hou, Z.; Wang, W.; Lin, J. Solvothermal synthesis and luminescent properties of monodisperse LaPO<sub>4</sub>:Ln (Ln=Eu<sup>3+</sup>, Ce<sup>3+</sup>, Tb<sup>3+</sup>) particles. *Journal of Solid State Chemistry.* **2009**, *182* (5), 1045–1054 DOI: 10.1016/j.jssc.2009.01.024.

## Додаток 5. Згода на збір та обробку персональних даних

## ЗГОДА

на збір та обробку персональних даних

Я (Ми), \_\_\_\_\_\_ (повне прізвище, ім'я та по батькові автора (авторів)), автор(и) статті \_\_\_\_\_\_ (назва статті \_\_\_\_\_\_ (назва статті), направленої на розгляд до редакції журналу "Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки", відповідно до Закону України "Про захист персональних даних", шляхом підписання цього тексту надаю (надаємо) згоду редакції журналу "Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки" на збір та обробку моїх (наших) персональних даних (прізвище, ім'я, по-батькові, адреса, місце роботи, посада, науковий ступінь, вчене звання, телефон, електронна пошта), з метою здійснення заходів щодо публікації статті в журналі "Вісник Донецького національного університету імені Василя Стуса. Серія хімічні науки".

" " 20 p.

Автор 1

(підпис)

(Прізвище, ініціали)

Автор 2

(підпис)

(Прізвище, ініціали)

(обов'язкова наявність підписів усіх співавторів)

## **GUIDE FOR AUTHORS**

## 1. Major provisions

The editorial board of "Bulletin of Vasyl' Stus Donetsk National University. Series Chemical Sciences" invites authors to publish their previously unpublished original research results and review articles in analytical, inorganic, organic, physical and colloidal, quantum and structural chemistry, biochemistry, medical and pharmaceutical chemistry, chemistry of macromolecular compounds, polymers and composites, nanochemistry, carbon chemistry, materials science, chemical ecology, agrochemistry, and chemical education.

The volume of the manuscript, as a rule, should not exceed 20 pages of text, including figures, tables, references (in case of review articles – up to 40 pages). Page format – A4. Layout of the article should comply with the rules given below.

All the manuscripts are peer-reviewed. Articles that do not correspond to the scope of the journal, do not satisfy the requirements below or contain plagiarism will be rejected.

The editorial board reserves the right to edit manuscripts and return articles to authors for revision and correction.

Publication is free of charge.

## 2. List of documents to be submitted

- *cover letter* from the organization where the work was done;
- *full text of the article* with tables and figures, provided after their first mentioning, and a list of references, named *manuscript\_Author* (the file name should contain the first author's surname);
- *information about authors* named *authors\_Author*;
- *figures* as separate files named *figure1*, *figure2*, etc. (format \*.tiff, \*.bmp, \*.jpeg, etc.), as well as images available for editing;
- *names* of two potential reviewers from outside organizations (containing full name, affiliation and e-mail of each reviewer).

Electronic versions of documents should be sent to the editorial board of the journal at <u>bulletin-chem.div@donnu.edu.ua</u>.

## 3. Requirements for the manuscript arrangement

### Article structure

- the article title should be informative, abbreviations are not allowed, except for commonly used ones; bold uppercase font, center alignment, no hyphenation;
- initials and surnames of the authors;
- full name of the organization where the work was done, its location (city and country). If there are several organizations, upper indices a, b, c... should be placed before the name of the organization and after the correspondence author's surname;
- e-mail of the corresponding author;
- abstract and keywords;
- main text of the article divided into sections: introduction (theoretical analysis), experimental part, results and discussion, conclusions;
- acknowledgements (if any);
- references.

## Abstract

Abstract of more than 1800 symbols should be informative, reflecting the main content of the article: the tasks of the research, methods used, results, and conclusions. The Abstract should not repeat the title of the article.

*Keywords* (from 3 to 8).

## *Text of the article*

The text of the manuscript should be prepared in MS Word (\*.doc/\*.docx).

Page options: mirror margins, 2 cm each, gutter 0 cm.

Times New Roman font, size 14 pt, justified alignment; 1.5 line spacing. First line indent should be 1.25 cm except for the text with centered alignment.

The text of the article should not contain hyphenation, blank lines, extra spaces, tabs, page breaks, and intervals before and after paragraphs.

Page numbers should be placed at the bottom of the page in the center.

Figures and tables should be given in the text after their first mentioning.

#### Figures

Figures should be attached as separate \*.tiff, \*.bmp, \*.jpeg, and other types of files. They should be placed in the manuscript after their first mentioning and numbered accordingly (Fig. 1, Fig. 2, ...). The elements of complex figures should be additionally referenced by letters a, b, c... Figures should be black and white or gray, 300 dpi. Graphs should not contain the grid lines, while axes should have concise and clear captions.

Each figure should have a caption (not merged with the drawing), with justified alignment on the page (Figure 1. Name).

Text information in the figure should be clear and legible. Additional information should be placed under the figure caption. The height of letters and numbers in the figure should not be less than 2 mm in case the figure was scaled up. All lines should not be less than 0.25 pt.

#### Tables

Tables should be created in MS Word and placed in the text of the article after their first mentioning. Table headings (Table 1. Name) should be placed above the tables and have centered alignment. Notes to tables should be placed under the tables and have justified alignment.

Alignment in the table cells should be centered, heightwise, no indent of the first line.

#### Formulas, terms and units of measurement

Mathematical formulas and their components should be typed using *Microsoft Equation 3.0* or other formula editor. Formulas should have consecutive numbering in parentheses on the right (with reference in the text to the numbered formula).

The chemical formulas should be created using ChemSketch, ChemDraw and other software, Times New Roman font.

All terms, notions, symbols must be universally used.

Units of measurements should be given according to SI system.

#### References

The reference to the source should be given in square brackets in the text of the article. The list of references is given at the end of the article in the order of their mentioning. Unpublished materials should not be referenced.

The list of references should be made in accordance with the *American Chemical Society style* (*with titles and DOI, sentence case*) international standard. Rules and examples are available at: <u>http://pubs.acs.org/doi/pdf/10.1021/bk-2006-STYG.ch014</u>.

It is also possible to automatically create references according to the international standards using online resources <u>http://www.citationmachine.net/</u>, <u>http://www.bibme.org/</u>, etc. (choosing the *American Chemical Society style (with titles and DOI, sentence case)* or bibliographic managers such as Mendeley, Zotero.